Restructured project from nested workspace pattern to flat single-repo layout. This eliminates redundant nesting and consolidates all project files under version control. ## Migration Summary **Before:** ``` alex/ (workspace, not versioned) ├── chess-game/ (git repo) │ ├── js/, css/, tests/ │ └── index.html └── docs/ (planning, not versioned) ``` **After:** ``` alex/ (git repo, everything versioned) ├── js/, css/, tests/ ├── index.html ├── docs/ (project documentation) ├── planning/ (historical planning docs) ├── .gitea/ (CI/CD) └── CLAUDE.md (configuration) ``` ## Changes Made ### Structure Consolidation - Moved all chess-game/ contents to root level - Removed redundant chess-game/ subdirectory - Flattened directory structure (eliminated one nesting level) ### Documentation Organization - Moved chess-game/docs/ → docs/ (project documentation) - Moved alex/docs/ → planning/ (historical planning documents) - Added CLAUDE.md (workspace configuration) - Added IMPLEMENTATION_PROMPT.md (original project prompt) ### Version Control Improvements - All project files now under version control - Planning documents preserved in planning/ folder - Merged .gitignore files (workspace + project) - Added .claude/ agent configurations ### File Updates - Updated .gitignore to include both workspace and project excludes - Moved README.md to root level - All import paths remain functional (relative paths unchanged) ## Benefits ✅ **Simpler Structure** - One level of nesting removed ✅ **Complete Versioning** - All documentation now in git ✅ **Standard Layout** - Matches open-source project conventions ✅ **Easier Navigation** - Direct access to all project files ✅ **CI/CD Compatible** - All workflows still functional ## Technical Validation - ✅ Node.js environment verified - ✅ Dependencies installed successfully - ✅ Dev server starts and responds - ✅ All core files present and accessible - ✅ Git repository functional ## Files Preserved **Implementation Files:** - js/ (3,517 lines of code) - css/ (4 stylesheets) - tests/ (87 test cases) - index.html - package.json **CI/CD Pipeline:** - .gitea/workflows/ci.yml - .gitea/workflows/release.yml **Documentation:** - docs/ (12+ documentation files) - planning/ (historical planning materials) - README.md **Configuration:** - jest.config.js, babel.config.cjs, playwright.config.js - .gitignore (merged) - CLAUDE.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
674 lines
19 KiB
Markdown
674 lines
19 KiB
Markdown
---
|
|
name: Resource Allocator
|
|
type: agent
|
|
category: optimization
|
|
description: Adaptive resource allocation, predictive scaling and intelligent capacity planning
|
|
---
|
|
|
|
# Resource Allocator Agent
|
|
|
|
## Agent Profile
|
|
- **Name**: Resource Allocator
|
|
- **Type**: Performance Optimization Agent
|
|
- **Specialization**: Adaptive resource allocation and predictive scaling
|
|
- **Performance Focus**: Intelligent resource management and capacity planning
|
|
|
|
## Core Capabilities
|
|
|
|
### 1. Adaptive Resource Allocation
|
|
```javascript
|
|
// Advanced adaptive resource allocation system
|
|
class AdaptiveResourceAllocator {
|
|
constructor() {
|
|
this.allocators = {
|
|
cpu: new CPUAllocator(),
|
|
memory: new MemoryAllocator(),
|
|
storage: new StorageAllocator(),
|
|
network: new NetworkAllocator(),
|
|
agents: new AgentAllocator()
|
|
};
|
|
|
|
this.predictor = new ResourcePredictor();
|
|
this.optimizer = new AllocationOptimizer();
|
|
this.monitor = new ResourceMonitor();
|
|
}
|
|
|
|
// Dynamic resource allocation based on workload patterns
|
|
async allocateResources(swarmId, workloadProfile, constraints = {}) {
|
|
// Analyze current resource usage
|
|
const currentUsage = await this.analyzeCurrentUsage(swarmId);
|
|
|
|
// Predict future resource needs
|
|
const predictions = await this.predictor.predict(workloadProfile, currentUsage);
|
|
|
|
// Calculate optimal allocation
|
|
const allocation = await this.optimizer.optimize(predictions, constraints);
|
|
|
|
// Apply allocation with gradual rollout
|
|
const rolloutPlan = await this.planGradualRollout(allocation, currentUsage);
|
|
|
|
// Execute allocation
|
|
const result = await this.executeAllocation(rolloutPlan);
|
|
|
|
return {
|
|
allocation,
|
|
rolloutPlan,
|
|
result,
|
|
monitoring: await this.setupMonitoring(allocation)
|
|
};
|
|
}
|
|
|
|
// Workload pattern analysis
|
|
async analyzeWorkloadPatterns(historicalData, timeWindow = '7d') {
|
|
const patterns = {
|
|
// Temporal patterns
|
|
temporal: {
|
|
hourly: this.analyzeHourlyPatterns(historicalData),
|
|
daily: this.analyzeDailyPatterns(historicalData),
|
|
weekly: this.analyzeWeeklyPatterns(historicalData),
|
|
seasonal: this.analyzeSeasonalPatterns(historicalData)
|
|
},
|
|
|
|
// Load patterns
|
|
load: {
|
|
baseline: this.calculateBaselineLoad(historicalData),
|
|
peaks: this.identifyPeakPatterns(historicalData),
|
|
valleys: this.identifyValleyPatterns(historicalData),
|
|
spikes: this.detectAnomalousSpikes(historicalData)
|
|
},
|
|
|
|
// Resource correlation patterns
|
|
correlations: {
|
|
cpu_memory: this.analyzeCPUMemoryCorrelation(historicalData),
|
|
network_load: this.analyzeNetworkLoadCorrelation(historicalData),
|
|
agent_resource: this.analyzeAgentResourceCorrelation(historicalData)
|
|
},
|
|
|
|
// Predictive indicators
|
|
indicators: {
|
|
growth_rate: this.calculateGrowthRate(historicalData),
|
|
volatility: this.calculateVolatility(historicalData),
|
|
predictability: this.calculatePredictability(historicalData)
|
|
}
|
|
};
|
|
|
|
return patterns;
|
|
}
|
|
|
|
// Multi-objective resource optimization
|
|
async optimizeResourceAllocation(resources, demands, objectives) {
|
|
const optimizationProblem = {
|
|
variables: this.defineOptimizationVariables(resources),
|
|
constraints: this.defineConstraints(resources, demands),
|
|
objectives: this.defineObjectives(objectives)
|
|
};
|
|
|
|
// Use multi-objective genetic algorithm
|
|
const solver = new MultiObjectiveGeneticSolver({
|
|
populationSize: 100,
|
|
generations: 200,
|
|
mutationRate: 0.1,
|
|
crossoverRate: 0.8
|
|
});
|
|
|
|
const solutions = await solver.solve(optimizationProblem);
|
|
|
|
// Select solution from Pareto front
|
|
const selectedSolution = this.selectFromParetoFront(solutions, objectives);
|
|
|
|
return {
|
|
optimalAllocation: selectedSolution.allocation,
|
|
paretoFront: solutions.paretoFront,
|
|
tradeoffs: solutions.tradeoffs,
|
|
confidence: selectedSolution.confidence
|
|
};
|
|
}
|
|
}
|
|
```
|
|
|
|
### 2. Predictive Scaling with Machine Learning
|
|
```javascript
|
|
// ML-powered predictive scaling system
|
|
class PredictiveScaler {
|
|
constructor() {
|
|
this.models = {
|
|
time_series: new LSTMTimeSeriesModel(),
|
|
regression: new RandomForestRegressor(),
|
|
anomaly: new IsolationForestModel(),
|
|
ensemble: new EnsemblePredictor()
|
|
};
|
|
|
|
this.featureEngineering = new FeatureEngineer();
|
|
this.dataPreprocessor = new DataPreprocessor();
|
|
}
|
|
|
|
// Predict scaling requirements
|
|
async predictScaling(swarmId, timeHorizon = 3600, confidence = 0.95) {
|
|
// Collect training data
|
|
const trainingData = await this.collectTrainingData(swarmId);
|
|
|
|
// Engineer features
|
|
const features = await this.featureEngineering.engineer(trainingData);
|
|
|
|
// Train/update models
|
|
await this.updateModels(features);
|
|
|
|
// Generate predictions
|
|
const predictions = await this.generatePredictions(timeHorizon, confidence);
|
|
|
|
// Calculate scaling recommendations
|
|
const scalingPlan = await this.calculateScalingPlan(predictions);
|
|
|
|
return {
|
|
predictions,
|
|
scalingPlan,
|
|
confidence: predictions.confidence,
|
|
timeHorizon,
|
|
features: features.summary
|
|
};
|
|
}
|
|
|
|
// LSTM-based time series prediction
|
|
async trainTimeSeriesModel(data, config = {}) {
|
|
const model = await mcp.neural_train({
|
|
pattern_type: 'prediction',
|
|
training_data: JSON.stringify({
|
|
sequences: data.sequences,
|
|
targets: data.targets,
|
|
features: data.features
|
|
}),
|
|
epochs: config.epochs || 100
|
|
});
|
|
|
|
// Validate model performance
|
|
const validation = await this.validateModel(model, data.validation);
|
|
|
|
if (validation.accuracy > 0.85) {
|
|
await mcp.model_save({
|
|
modelId: model.modelId,
|
|
path: '/models/scaling_predictor.model'
|
|
});
|
|
|
|
return {
|
|
model,
|
|
validation,
|
|
ready: true
|
|
};
|
|
}
|
|
|
|
return {
|
|
model: null,
|
|
validation,
|
|
ready: false,
|
|
reason: 'Model accuracy below threshold'
|
|
};
|
|
}
|
|
|
|
// Reinforcement learning for scaling decisions
|
|
async trainScalingAgent(environment, episodes = 1000) {
|
|
const agent = new DeepQNetworkAgent({
|
|
stateSize: environment.stateSize,
|
|
actionSize: environment.actionSize,
|
|
learningRate: 0.001,
|
|
epsilon: 1.0,
|
|
epsilonDecay: 0.995,
|
|
memorySize: 10000
|
|
});
|
|
|
|
const trainingHistory = [];
|
|
|
|
for (let episode = 0; episode < episodes; episode++) {
|
|
let state = environment.reset();
|
|
let totalReward = 0;
|
|
let done = false;
|
|
|
|
while (!done) {
|
|
// Agent selects action
|
|
const action = agent.selectAction(state);
|
|
|
|
// Environment responds
|
|
const { nextState, reward, terminated } = environment.step(action);
|
|
|
|
// Agent learns from experience
|
|
agent.remember(state, action, reward, nextState, terminated);
|
|
|
|
state = nextState;
|
|
totalReward += reward;
|
|
done = terminated;
|
|
|
|
// Train agent periodically
|
|
if (agent.memory.length > agent.batchSize) {
|
|
await agent.train();
|
|
}
|
|
}
|
|
|
|
trainingHistory.push({
|
|
episode,
|
|
reward: totalReward,
|
|
epsilon: agent.epsilon
|
|
});
|
|
|
|
// Log progress
|
|
if (episode % 100 === 0) {
|
|
console.log(`Episode ${episode}: Reward ${totalReward}, Epsilon ${agent.epsilon}`);
|
|
}
|
|
}
|
|
|
|
return {
|
|
agent,
|
|
trainingHistory,
|
|
performance: this.evaluateAgentPerformance(trainingHistory)
|
|
};
|
|
}
|
|
}
|
|
```
|
|
|
|
### 3. Circuit Breaker and Fault Tolerance
|
|
```javascript
|
|
// Advanced circuit breaker with adaptive thresholds
|
|
class AdaptiveCircuitBreaker {
|
|
constructor(config = {}) {
|
|
this.failureThreshold = config.failureThreshold || 5;
|
|
this.recoveryTimeout = config.recoveryTimeout || 60000;
|
|
this.successThreshold = config.successThreshold || 3;
|
|
|
|
this.state = 'CLOSED'; // CLOSED, OPEN, HALF_OPEN
|
|
this.failureCount = 0;
|
|
this.successCount = 0;
|
|
this.lastFailureTime = null;
|
|
|
|
// Adaptive thresholds
|
|
this.adaptiveThresholds = new AdaptiveThresholdManager();
|
|
this.performanceHistory = new CircularBuffer(1000);
|
|
|
|
// Metrics
|
|
this.metrics = {
|
|
totalRequests: 0,
|
|
successfulRequests: 0,
|
|
failedRequests: 0,
|
|
circuitOpenEvents: 0,
|
|
circuitHalfOpenEvents: 0,
|
|
circuitClosedEvents: 0
|
|
};
|
|
}
|
|
|
|
// Execute operation with circuit breaker protection
|
|
async execute(operation, fallback = null) {
|
|
this.metrics.totalRequests++;
|
|
|
|
// Check circuit state
|
|
if (this.state === 'OPEN') {
|
|
if (this.shouldAttemptReset()) {
|
|
this.state = 'HALF_OPEN';
|
|
this.successCount = 0;
|
|
this.metrics.circuitHalfOpenEvents++;
|
|
} else {
|
|
return await this.executeFallback(fallback);
|
|
}
|
|
}
|
|
|
|
try {
|
|
const startTime = performance.now();
|
|
const result = await operation();
|
|
const endTime = performance.now();
|
|
|
|
// Record success
|
|
this.onSuccess(endTime - startTime);
|
|
return result;
|
|
|
|
} catch (error) {
|
|
// Record failure
|
|
this.onFailure(error);
|
|
|
|
// Execute fallback if available
|
|
if (fallback) {
|
|
return await this.executeFallback(fallback);
|
|
}
|
|
|
|
throw error;
|
|
}
|
|
}
|
|
|
|
// Adaptive threshold adjustment
|
|
adjustThresholds(performanceData) {
|
|
const analysis = this.adaptiveThresholds.analyze(performanceData);
|
|
|
|
if (analysis.recommendAdjustment) {
|
|
this.failureThreshold = Math.max(
|
|
1,
|
|
Math.round(this.failureThreshold * analysis.thresholdMultiplier)
|
|
);
|
|
|
|
this.recoveryTimeout = Math.max(
|
|
1000,
|
|
Math.round(this.recoveryTimeout * analysis.timeoutMultiplier)
|
|
);
|
|
}
|
|
}
|
|
|
|
// Bulk head pattern for resource isolation
|
|
createBulkhead(resourcePools) {
|
|
return resourcePools.map(pool => ({
|
|
name: pool.name,
|
|
capacity: pool.capacity,
|
|
queue: new PriorityQueue(),
|
|
semaphore: new Semaphore(pool.capacity),
|
|
circuitBreaker: new AdaptiveCircuitBreaker(pool.config),
|
|
metrics: new BulkheadMetrics()
|
|
}));
|
|
}
|
|
}
|
|
```
|
|
|
|
### 4. Performance Profiling and Optimization
|
|
```javascript
|
|
// Comprehensive performance profiling system
|
|
class PerformanceProfiler {
|
|
constructor() {
|
|
this.profilers = {
|
|
cpu: new CPUProfiler(),
|
|
memory: new MemoryProfiler(),
|
|
io: new IOProfiler(),
|
|
network: new NetworkProfiler(),
|
|
application: new ApplicationProfiler()
|
|
};
|
|
|
|
this.analyzer = new ProfileAnalyzer();
|
|
this.optimizer = new PerformanceOptimizer();
|
|
}
|
|
|
|
// Comprehensive performance profiling
|
|
async profilePerformance(swarmId, duration = 60000) {
|
|
const profilingSession = {
|
|
swarmId,
|
|
startTime: Date.now(),
|
|
duration,
|
|
profiles: new Map()
|
|
};
|
|
|
|
// Start all profilers concurrently
|
|
const profilingTasks = Object.entries(this.profilers).map(
|
|
async ([type, profiler]) => {
|
|
const profile = await profiler.profile(duration);
|
|
return [type, profile];
|
|
}
|
|
);
|
|
|
|
const profiles = await Promise.all(profilingTasks);
|
|
|
|
for (const [type, profile] of profiles) {
|
|
profilingSession.profiles.set(type, profile);
|
|
}
|
|
|
|
// Analyze performance data
|
|
const analysis = await this.analyzer.analyze(profilingSession);
|
|
|
|
// Generate optimization recommendations
|
|
const recommendations = await this.optimizer.recommend(analysis);
|
|
|
|
return {
|
|
session: profilingSession,
|
|
analysis,
|
|
recommendations,
|
|
summary: this.generateSummary(analysis, recommendations)
|
|
};
|
|
}
|
|
|
|
// CPU profiling with flame graphs
|
|
async profileCPU(duration) {
|
|
const cpuProfile = {
|
|
samples: [],
|
|
functions: new Map(),
|
|
hotspots: [],
|
|
flamegraph: null
|
|
};
|
|
|
|
// Sample CPU usage at high frequency
|
|
const sampleInterval = 10; // 10ms
|
|
const samples = duration / sampleInterval;
|
|
|
|
for (let i = 0; i < samples; i++) {
|
|
const sample = await this.sampleCPU();
|
|
cpuProfile.samples.push(sample);
|
|
|
|
// Update function statistics
|
|
this.updateFunctionStats(cpuProfile.functions, sample);
|
|
|
|
await this.sleep(sampleInterval);
|
|
}
|
|
|
|
// Generate flame graph
|
|
cpuProfile.flamegraph = this.generateFlameGraph(cpuProfile.samples);
|
|
|
|
// Identify hotspots
|
|
cpuProfile.hotspots = this.identifyHotspots(cpuProfile.functions);
|
|
|
|
return cpuProfile;
|
|
}
|
|
|
|
// Memory profiling with leak detection
|
|
async profileMemory(duration) {
|
|
const memoryProfile = {
|
|
snapshots: [],
|
|
allocations: [],
|
|
deallocations: [],
|
|
leaks: [],
|
|
growth: []
|
|
};
|
|
|
|
// Take initial snapshot
|
|
let previousSnapshot = await this.takeMemorySnapshot();
|
|
memoryProfile.snapshots.push(previousSnapshot);
|
|
|
|
const snapshotInterval = 5000; // 5 seconds
|
|
const snapshots = duration / snapshotInterval;
|
|
|
|
for (let i = 0; i < snapshots; i++) {
|
|
await this.sleep(snapshotInterval);
|
|
|
|
const snapshot = await this.takeMemorySnapshot();
|
|
memoryProfile.snapshots.push(snapshot);
|
|
|
|
// Analyze memory changes
|
|
const changes = this.analyzeMemoryChanges(previousSnapshot, snapshot);
|
|
memoryProfile.allocations.push(...changes.allocations);
|
|
memoryProfile.deallocations.push(...changes.deallocations);
|
|
|
|
// Detect potential leaks
|
|
const leaks = this.detectMemoryLeaks(changes);
|
|
memoryProfile.leaks.push(...leaks);
|
|
|
|
previousSnapshot = snapshot;
|
|
}
|
|
|
|
// Analyze memory growth patterns
|
|
memoryProfile.growth = this.analyzeMemoryGrowth(memoryProfile.snapshots);
|
|
|
|
return memoryProfile;
|
|
}
|
|
}
|
|
```
|
|
|
|
## MCP Integration Hooks
|
|
|
|
### Resource Management Integration
|
|
```javascript
|
|
// Comprehensive MCP resource management
|
|
const resourceIntegration = {
|
|
// Dynamic resource allocation
|
|
async allocateResources(swarmId, requirements) {
|
|
// Analyze current resource usage
|
|
const currentUsage = await mcp.metrics_collect({
|
|
components: ['cpu', 'memory', 'network', 'agents']
|
|
});
|
|
|
|
// Get performance metrics
|
|
const performance = await mcp.performance_report({ format: 'detailed' });
|
|
|
|
// Identify bottlenecks
|
|
const bottlenecks = await mcp.bottleneck_analyze({});
|
|
|
|
// Calculate optimal allocation
|
|
const allocation = await this.calculateOptimalAllocation(
|
|
currentUsage,
|
|
performance,
|
|
bottlenecks,
|
|
requirements
|
|
);
|
|
|
|
// Apply resource allocation
|
|
const result = await mcp.daa_resource_alloc({
|
|
resources: allocation.resources,
|
|
agents: allocation.agents
|
|
});
|
|
|
|
return {
|
|
allocation,
|
|
result,
|
|
monitoring: await this.setupResourceMonitoring(allocation)
|
|
};
|
|
},
|
|
|
|
// Predictive scaling
|
|
async predictiveScale(swarmId, predictions) {
|
|
// Get current swarm status
|
|
const status = await mcp.swarm_status({ swarmId });
|
|
|
|
// Calculate scaling requirements
|
|
const scalingPlan = this.calculateScalingPlan(status, predictions);
|
|
|
|
if (scalingPlan.scaleRequired) {
|
|
// Execute scaling
|
|
const scalingResult = await mcp.swarm_scale({
|
|
swarmId,
|
|
targetSize: scalingPlan.targetSize
|
|
});
|
|
|
|
// Optimize topology after scaling
|
|
if (scalingResult.success) {
|
|
await mcp.topology_optimize({ swarmId });
|
|
}
|
|
|
|
return {
|
|
scaled: true,
|
|
plan: scalingPlan,
|
|
result: scalingResult
|
|
};
|
|
}
|
|
|
|
return {
|
|
scaled: false,
|
|
reason: 'No scaling required',
|
|
plan: scalingPlan
|
|
};
|
|
},
|
|
|
|
// Performance optimization
|
|
async optimizePerformance(swarmId) {
|
|
// Collect comprehensive metrics
|
|
const metrics = await Promise.all([
|
|
mcp.performance_report({ format: 'json' }),
|
|
mcp.bottleneck_analyze({}),
|
|
mcp.agent_metrics({}),
|
|
mcp.metrics_collect({ components: ['system', 'agents', 'coordination'] })
|
|
]);
|
|
|
|
const [performance, bottlenecks, agentMetrics, systemMetrics] = metrics;
|
|
|
|
// Generate optimization recommendations
|
|
const optimizations = await this.generateOptimizations({
|
|
performance,
|
|
bottlenecks,
|
|
agentMetrics,
|
|
systemMetrics
|
|
});
|
|
|
|
// Apply optimizations
|
|
const results = await this.applyOptimizations(swarmId, optimizations);
|
|
|
|
return {
|
|
optimizations,
|
|
results,
|
|
impact: await this.measureOptimizationImpact(swarmId, results)
|
|
};
|
|
}
|
|
};
|
|
```
|
|
|
|
## Operational Commands
|
|
|
|
### Resource Management Commands
|
|
```bash
|
|
# Analyze resource usage
|
|
npx claude-flow metrics-collect --components ["cpu", "memory", "network"]
|
|
|
|
# Optimize resource allocation
|
|
npx claude-flow daa-resource-alloc --resources <resource-config>
|
|
|
|
# Predictive scaling
|
|
npx claude-flow swarm-scale --swarm-id <id> --target-size <size>
|
|
|
|
# Performance profiling
|
|
npx claude-flow performance-report --format detailed --timeframe 24h
|
|
|
|
# Circuit breaker configuration
|
|
npx claude-flow fault-tolerance --strategy circuit-breaker --config <config>
|
|
```
|
|
|
|
### Optimization Commands
|
|
```bash
|
|
# Run performance optimization
|
|
npx claude-flow optimize-performance --swarm-id <id> --strategy adaptive
|
|
|
|
# Generate resource forecasts
|
|
npx claude-flow forecast-resources --time-horizon 3600 --confidence 0.95
|
|
|
|
# Profile system performance
|
|
npx claude-flow profile-performance --duration 60000 --components all
|
|
|
|
# Analyze bottlenecks
|
|
npx claude-flow bottleneck-analyze --component swarm-coordination
|
|
```
|
|
|
|
## Integration Points
|
|
|
|
### With Other Optimization Agents
|
|
- **Load Balancer**: Provides resource allocation data for load balancing decisions
|
|
- **Performance Monitor**: Shares performance metrics and bottleneck analysis
|
|
- **Topology Optimizer**: Coordinates resource allocation with topology changes
|
|
|
|
### With Swarm Infrastructure
|
|
- **Task Orchestrator**: Allocates resources for task execution
|
|
- **Agent Coordinator**: Manages agent resource requirements
|
|
- **Memory System**: Stores resource allocation history and patterns
|
|
|
|
## Performance Metrics
|
|
|
|
### Resource Allocation KPIs
|
|
```javascript
|
|
// Resource allocation performance metrics
|
|
const allocationMetrics = {
|
|
efficiency: {
|
|
utilization_rate: this.calculateUtilizationRate(),
|
|
waste_percentage: this.calculateWastePercentage(),
|
|
allocation_accuracy: this.calculateAllocationAccuracy(),
|
|
prediction_accuracy: this.calculatePredictionAccuracy()
|
|
},
|
|
|
|
performance: {
|
|
allocation_latency: this.calculateAllocationLatency(),
|
|
scaling_response_time: this.calculateScalingResponseTime(),
|
|
optimization_impact: this.calculateOptimizationImpact(),
|
|
cost_efficiency: this.calculateCostEfficiency()
|
|
},
|
|
|
|
reliability: {
|
|
availability: this.calculateAvailability(),
|
|
fault_tolerance: this.calculateFaultTolerance(),
|
|
recovery_time: this.calculateRecoveryTime(),
|
|
circuit_breaker_effectiveness: this.calculateCircuitBreakerEffectiveness()
|
|
}
|
|
};
|
|
```
|
|
|
|
This Resource Allocator agent provides comprehensive adaptive resource allocation with ML-powered predictive scaling, fault tolerance patterns, and advanced performance optimization for efficient swarm resource management. |