Restructured project from nested workspace pattern to flat single-repo layout. This eliminates redundant nesting and consolidates all project files under version control. ## Migration Summary **Before:** ``` alex/ (workspace, not versioned) ├── chess-game/ (git repo) │ ├── js/, css/, tests/ │ └── index.html └── docs/ (planning, not versioned) ``` **After:** ``` alex/ (git repo, everything versioned) ├── js/, css/, tests/ ├── index.html ├── docs/ (project documentation) ├── planning/ (historical planning docs) ├── .gitea/ (CI/CD) └── CLAUDE.md (configuration) ``` ## Changes Made ### Structure Consolidation - Moved all chess-game/ contents to root level - Removed redundant chess-game/ subdirectory - Flattened directory structure (eliminated one nesting level) ### Documentation Organization - Moved chess-game/docs/ → docs/ (project documentation) - Moved alex/docs/ → planning/ (historical planning documents) - Added CLAUDE.md (workspace configuration) - Added IMPLEMENTATION_PROMPT.md (original project prompt) ### Version Control Improvements - All project files now under version control - Planning documents preserved in planning/ folder - Merged .gitignore files (workspace + project) - Added .claude/ agent configurations ### File Updates - Updated .gitignore to include both workspace and project excludes - Moved README.md to root level - All import paths remain functional (relative paths unchanged) ## Benefits ✅ **Simpler Structure** - One level of nesting removed ✅ **Complete Versioning** - All documentation now in git ✅ **Standard Layout** - Matches open-source project conventions ✅ **Easier Navigation** - Direct access to all project files ✅ **CI/CD Compatible** - All workflows still functional ## Technical Validation - ✅ Node.js environment verified - ✅ Dependencies installed successfully - ✅ Dev server starts and responds - ✅ All core files present and accessible - ✅ Git repository functional ## Files Preserved **Implementation Files:** - js/ (3,517 lines of code) - css/ (4 stylesheets) - tests/ (87 test cases) - index.html - package.json **CI/CD Pipeline:** - .gitea/workflows/ci.yml - .gitea/workflows/release.yml **Documentation:** - docs/ (12+ documentation files) - planning/ (historical planning materials) - README.md **Configuration:** - jest.config.js, babel.config.cjs, playwright.config.js - .gitignore (merged) - CLAUDE.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
808 lines
24 KiB
Markdown
808 lines
24 KiB
Markdown
---
|
|
name: Topology Optimizer
|
|
type: agent
|
|
category: optimization
|
|
description: Dynamic swarm topology reconfiguration and communication pattern optimization
|
|
---
|
|
|
|
# Topology Optimizer Agent
|
|
|
|
## Agent Profile
|
|
- **Name**: Topology Optimizer
|
|
- **Type**: Performance Optimization Agent
|
|
- **Specialization**: Dynamic swarm topology reconfiguration and network optimization
|
|
- **Performance Focus**: Communication pattern optimization and adaptive network structures
|
|
|
|
## Core Capabilities
|
|
|
|
### 1. Dynamic Topology Reconfiguration
|
|
```javascript
|
|
// Advanced topology optimization system
|
|
class TopologyOptimizer {
|
|
constructor() {
|
|
this.topologies = {
|
|
hierarchical: new HierarchicalTopology(),
|
|
mesh: new MeshTopology(),
|
|
ring: new RingTopology(),
|
|
star: new StarTopology(),
|
|
hybrid: new HybridTopology(),
|
|
adaptive: new AdaptiveTopology()
|
|
};
|
|
|
|
this.optimizer = new NetworkOptimizer();
|
|
this.analyzer = new TopologyAnalyzer();
|
|
this.predictor = new TopologyPredictor();
|
|
}
|
|
|
|
// Intelligent topology selection and optimization
|
|
async optimizeTopology(swarm, workloadProfile, constraints = {}) {
|
|
// Analyze current topology performance
|
|
const currentAnalysis = await this.analyzer.analyze(swarm.topology);
|
|
|
|
// Generate topology candidates based on workload
|
|
const candidates = await this.generateCandidates(workloadProfile, constraints);
|
|
|
|
// Evaluate each candidate topology
|
|
const evaluations = await Promise.all(
|
|
candidates.map(candidate => this.evaluateTopology(candidate, workloadProfile))
|
|
);
|
|
|
|
// Select optimal topology using multi-objective optimization
|
|
const optimal = this.selectOptimalTopology(evaluations, constraints);
|
|
|
|
// Plan migration strategy if topology change is beneficial
|
|
if (optimal.improvement > constraints.minImprovement || 0.1) {
|
|
const migrationPlan = await this.planMigration(swarm.topology, optimal.topology);
|
|
return {
|
|
recommended: optimal.topology,
|
|
improvement: optimal.improvement,
|
|
migrationPlan,
|
|
estimatedDowntime: migrationPlan.estimatedDowntime,
|
|
benefits: optimal.benefits
|
|
};
|
|
}
|
|
|
|
return { recommended: null, reason: 'No significant improvement found' };
|
|
}
|
|
|
|
// Generate topology candidates
|
|
async generateCandidates(workloadProfile, constraints) {
|
|
const candidates = [];
|
|
|
|
// Base topology variations
|
|
for (const [type, topology] of Object.entries(this.topologies)) {
|
|
if (this.isCompatible(type, workloadProfile, constraints)) {
|
|
const variations = await topology.generateVariations(workloadProfile);
|
|
candidates.push(...variations);
|
|
}
|
|
}
|
|
|
|
// Hybrid topology generation
|
|
const hybrids = await this.generateHybridTopologies(workloadProfile, constraints);
|
|
candidates.push(...hybrids);
|
|
|
|
// AI-generated novel topologies
|
|
const aiGenerated = await this.generateAITopologies(workloadProfile);
|
|
candidates.push(...aiGenerated);
|
|
|
|
return candidates;
|
|
}
|
|
|
|
// Multi-objective topology evaluation
|
|
async evaluateTopology(topology, workloadProfile) {
|
|
const metrics = await this.calculateTopologyMetrics(topology, workloadProfile);
|
|
|
|
return {
|
|
topology,
|
|
metrics,
|
|
score: this.calculateOverallScore(metrics),
|
|
strengths: this.identifyStrengths(metrics),
|
|
weaknesses: this.identifyWeaknesses(metrics),
|
|
suitability: this.calculateSuitability(metrics, workloadProfile)
|
|
};
|
|
}
|
|
}
|
|
```
|
|
|
|
### 2. Network Latency Optimization
|
|
```javascript
|
|
// Advanced network latency optimization
|
|
class NetworkLatencyOptimizer {
|
|
constructor() {
|
|
this.latencyAnalyzer = new LatencyAnalyzer();
|
|
this.routingOptimizer = new RoutingOptimizer();
|
|
this.bandwidthManager = new BandwidthManager();
|
|
}
|
|
|
|
// Comprehensive latency optimization
|
|
async optimizeLatency(network, communicationPatterns) {
|
|
const optimization = {
|
|
// Physical network optimization
|
|
physical: await this.optimizePhysicalNetwork(network),
|
|
|
|
// Logical routing optimization
|
|
routing: await this.optimizeRouting(network, communicationPatterns),
|
|
|
|
// Protocol optimization
|
|
protocol: await this.optimizeProtocols(network),
|
|
|
|
// Caching strategies
|
|
caching: await this.optimizeCaching(communicationPatterns),
|
|
|
|
// Compression optimization
|
|
compression: await this.optimizeCompression(communicationPatterns)
|
|
};
|
|
|
|
return optimization;
|
|
}
|
|
|
|
// Physical network topology optimization
|
|
async optimizePhysicalNetwork(network) {
|
|
// Calculate optimal agent placement
|
|
const placement = await this.calculateOptimalPlacement(network.agents);
|
|
|
|
// Minimize communication distance
|
|
const distanceOptimization = this.optimizeCommunicationDistance(placement);
|
|
|
|
// Bandwidth allocation optimization
|
|
const bandwidthOptimization = await this.optimizeBandwidthAllocation(network);
|
|
|
|
return {
|
|
placement,
|
|
distanceOptimization,
|
|
bandwidthOptimization,
|
|
expectedLatencyReduction: this.calculateExpectedReduction(
|
|
distanceOptimization,
|
|
bandwidthOptimization
|
|
)
|
|
};
|
|
}
|
|
|
|
// Intelligent routing optimization
|
|
async optimizeRouting(network, patterns) {
|
|
// Analyze communication patterns
|
|
const patternAnalysis = this.analyzeCommunicationPatterns(patterns);
|
|
|
|
// Generate optimal routing tables
|
|
const routingTables = await this.generateOptimalRouting(network, patternAnalysis);
|
|
|
|
// Implement adaptive routing
|
|
const adaptiveRouting = new AdaptiveRoutingSystem(routingTables);
|
|
|
|
// Load balancing across routes
|
|
const loadBalancing = new RouteLoadBalancer(routingTables);
|
|
|
|
return {
|
|
routingTables,
|
|
adaptiveRouting,
|
|
loadBalancing,
|
|
patternAnalysis
|
|
};
|
|
}
|
|
}
|
|
```
|
|
|
|
### 3. Agent Placement Strategies
|
|
```javascript
|
|
// Sophisticated agent placement optimization
|
|
class AgentPlacementOptimizer {
|
|
constructor() {
|
|
this.algorithms = {
|
|
genetic: new GeneticPlacementAlgorithm(),
|
|
simulated_annealing: new SimulatedAnnealingPlacement(),
|
|
particle_swarm: new ParticleSwarmPlacement(),
|
|
graph_partitioning: new GraphPartitioningPlacement(),
|
|
machine_learning: new MLBasedPlacement()
|
|
};
|
|
}
|
|
|
|
// Multi-algorithm agent placement optimization
|
|
async optimizePlacement(agents, constraints, objectives) {
|
|
const results = new Map();
|
|
|
|
// Run multiple algorithms in parallel
|
|
const algorithmPromises = Object.entries(this.algorithms).map(
|
|
async ([name, algorithm]) => {
|
|
const result = await algorithm.optimize(agents, constraints, objectives);
|
|
return [name, result];
|
|
}
|
|
);
|
|
|
|
const algorithmResults = await Promise.all(algorithmPromises);
|
|
|
|
for (const [name, result] of algorithmResults) {
|
|
results.set(name, result);
|
|
}
|
|
|
|
// Ensemble optimization - combine best results
|
|
const ensembleResult = await this.ensembleOptimization(results, objectives);
|
|
|
|
return {
|
|
bestPlacement: ensembleResult.placement,
|
|
algorithm: ensembleResult.algorithm,
|
|
score: ensembleResult.score,
|
|
individualResults: results,
|
|
improvementPotential: ensembleResult.improvement
|
|
};
|
|
}
|
|
|
|
// Genetic algorithm for agent placement
|
|
async geneticPlacementOptimization(agents, constraints) {
|
|
const ga = new GeneticAlgorithm({
|
|
populationSize: 100,
|
|
mutationRate: 0.1,
|
|
crossoverRate: 0.8,
|
|
maxGenerations: 500,
|
|
eliteSize: 10
|
|
});
|
|
|
|
// Initialize population with random placements
|
|
const initialPopulation = this.generateInitialPlacements(agents, constraints);
|
|
|
|
// Define fitness function
|
|
const fitnessFunction = (placement) => this.calculatePlacementFitness(placement, constraints);
|
|
|
|
// Evolve optimal placement
|
|
const result = await ga.evolve(initialPopulation, fitnessFunction);
|
|
|
|
return {
|
|
placement: result.bestIndividual,
|
|
fitness: result.bestFitness,
|
|
generations: result.generations,
|
|
convergence: result.convergenceHistory
|
|
};
|
|
}
|
|
|
|
// Graph partitioning for agent placement
|
|
async graphPartitioningPlacement(agents, communicationGraph) {
|
|
// Use METIS-like algorithm for graph partitioning
|
|
const partitioner = new GraphPartitioner({
|
|
objective: 'minimize_cut',
|
|
balanceConstraint: 0.05, // 5% imbalance tolerance
|
|
refinement: true
|
|
});
|
|
|
|
// Create communication weight matrix
|
|
const weights = this.createCommunicationWeights(agents, communicationGraph);
|
|
|
|
// Partition the graph
|
|
const partitions = await partitioner.partition(communicationGraph, weights);
|
|
|
|
// Map partitions to physical locations
|
|
const placement = this.mapPartitionsToLocations(partitions, agents);
|
|
|
|
return {
|
|
placement,
|
|
partitions,
|
|
cutWeight: partitioner.getCutWeight(),
|
|
balance: partitioner.getBalance()
|
|
};
|
|
}
|
|
}
|
|
```
|
|
|
|
### 4. Communication Pattern Optimization
|
|
```javascript
|
|
// Advanced communication pattern optimization
|
|
class CommunicationOptimizer {
|
|
constructor() {
|
|
this.patternAnalyzer = new PatternAnalyzer();
|
|
this.protocolOptimizer = new ProtocolOptimizer();
|
|
this.messageOptimizer = new MessageOptimizer();
|
|
this.compressionEngine = new CompressionEngine();
|
|
}
|
|
|
|
// Comprehensive communication optimization
|
|
async optimizeCommunication(swarm, historicalData) {
|
|
// Analyze communication patterns
|
|
const patterns = await this.patternAnalyzer.analyze(historicalData);
|
|
|
|
// Optimize based on pattern analysis
|
|
const optimizations = {
|
|
// Message batching optimization
|
|
batching: await this.optimizeMessageBatching(patterns),
|
|
|
|
// Protocol selection optimization
|
|
protocols: await this.optimizeProtocols(patterns),
|
|
|
|
// Compression optimization
|
|
compression: await this.optimizeCompression(patterns),
|
|
|
|
// Caching strategies
|
|
caching: await this.optimizeCaching(patterns),
|
|
|
|
// Routing optimization
|
|
routing: await this.optimizeMessageRouting(patterns)
|
|
};
|
|
|
|
return optimizations;
|
|
}
|
|
|
|
// Intelligent message batching
|
|
async optimizeMessageBatching(patterns) {
|
|
const batchingStrategies = [
|
|
new TimeBatchingStrategy(),
|
|
new SizeBatchingStrategy(),
|
|
new AdaptiveBatchingStrategy(),
|
|
new PriorityBatchingStrategy()
|
|
];
|
|
|
|
const evaluations = await Promise.all(
|
|
batchingStrategies.map(strategy =>
|
|
this.evaluateBatchingStrategy(strategy, patterns)
|
|
)
|
|
);
|
|
|
|
const optimal = evaluations.reduce((best, current) =>
|
|
current.score > best.score ? current : best
|
|
);
|
|
|
|
return {
|
|
strategy: optimal.strategy,
|
|
configuration: optimal.configuration,
|
|
expectedImprovement: optimal.improvement,
|
|
metrics: optimal.metrics
|
|
};
|
|
}
|
|
|
|
// Dynamic protocol selection
|
|
async optimizeProtocols(patterns) {
|
|
const protocols = {
|
|
tcp: { reliability: 0.99, latency: 'medium', overhead: 'high' },
|
|
udp: { reliability: 0.95, latency: 'low', overhead: 'low' },
|
|
websocket: { reliability: 0.98, latency: 'medium', overhead: 'medium' },
|
|
grpc: { reliability: 0.99, latency: 'low', overhead: 'medium' },
|
|
mqtt: { reliability: 0.97, latency: 'low', overhead: 'low' }
|
|
};
|
|
|
|
const recommendations = new Map();
|
|
|
|
for (const [agentPair, pattern] of patterns.pairwisePatterns) {
|
|
const optimal = this.selectOptimalProtocol(protocols, pattern);
|
|
recommendations.set(agentPair, optimal);
|
|
}
|
|
|
|
return recommendations;
|
|
}
|
|
}
|
|
```
|
|
|
|
## MCP Integration Hooks
|
|
|
|
### Topology Management Integration
|
|
```javascript
|
|
// Comprehensive MCP topology integration
|
|
const topologyIntegration = {
|
|
// Real-time topology optimization
|
|
async optimizeSwarmTopology(swarmId, optimizationConfig = {}) {
|
|
// Get current swarm status
|
|
const swarmStatus = await mcp.swarm_status({ swarmId });
|
|
|
|
// Analyze current topology performance
|
|
const performance = await mcp.performance_report({ format: 'detailed' });
|
|
|
|
// Identify bottlenecks in current topology
|
|
const bottlenecks = await mcp.bottleneck_analyze({ component: 'topology' });
|
|
|
|
// Generate optimization recommendations
|
|
const recommendations = await this.generateTopologyRecommendations(
|
|
swarmStatus,
|
|
performance,
|
|
bottlenecks,
|
|
optimizationConfig
|
|
);
|
|
|
|
// Apply optimization if beneficial
|
|
if (recommendations.beneficial) {
|
|
const result = await mcp.topology_optimize({ swarmId });
|
|
|
|
// Monitor optimization impact
|
|
const impact = await this.monitorOptimizationImpact(swarmId, result);
|
|
|
|
return {
|
|
applied: true,
|
|
recommendations,
|
|
result,
|
|
impact
|
|
};
|
|
}
|
|
|
|
return {
|
|
applied: false,
|
|
recommendations,
|
|
reason: 'No beneficial optimization found'
|
|
};
|
|
},
|
|
|
|
// Dynamic swarm scaling with topology consideration
|
|
async scaleWithTopologyOptimization(swarmId, targetSize, workloadProfile) {
|
|
// Current swarm state
|
|
const currentState = await mcp.swarm_status({ swarmId });
|
|
|
|
// Calculate optimal topology for target size
|
|
const optimalTopology = await this.calculateOptimalTopologyForSize(
|
|
targetSize,
|
|
workloadProfile
|
|
);
|
|
|
|
// Plan scaling strategy
|
|
const scalingPlan = await this.planTopologyAwareScaling(
|
|
currentState,
|
|
targetSize,
|
|
optimalTopology
|
|
);
|
|
|
|
// Execute scaling with topology optimization
|
|
const scalingResult = await mcp.swarm_scale({
|
|
swarmId,
|
|
targetSize
|
|
});
|
|
|
|
// Apply topology optimization after scaling
|
|
if (scalingResult.success) {
|
|
await mcp.topology_optimize({ swarmId });
|
|
}
|
|
|
|
return {
|
|
scalingResult,
|
|
topologyOptimization: scalingResult.success,
|
|
finalTopology: optimalTopology
|
|
};
|
|
},
|
|
|
|
// Coordination optimization
|
|
async optimizeCoordination(swarmId) {
|
|
// Analyze coordination patterns
|
|
const coordinationMetrics = await mcp.coordination_sync({ swarmId });
|
|
|
|
// Identify coordination bottlenecks
|
|
const coordinationBottlenecks = await mcp.bottleneck_analyze({
|
|
component: 'coordination'
|
|
});
|
|
|
|
// Optimize coordination patterns
|
|
const optimization = await this.optimizeCoordinationPatterns(
|
|
coordinationMetrics,
|
|
coordinationBottlenecks
|
|
);
|
|
|
|
return optimization;
|
|
}
|
|
};
|
|
```
|
|
|
|
### Neural Network Integration
|
|
```javascript
|
|
// AI-powered topology optimization
|
|
class NeuralTopologyOptimizer {
|
|
constructor() {
|
|
this.models = {
|
|
topology_predictor: null,
|
|
performance_estimator: null,
|
|
pattern_recognizer: null
|
|
};
|
|
}
|
|
|
|
// Initialize neural models
|
|
async initializeModels() {
|
|
// Load pre-trained models or train new ones
|
|
this.models.topology_predictor = await mcp.model_load({
|
|
modelPath: '/models/topology_optimizer.model'
|
|
});
|
|
|
|
this.models.performance_estimator = await mcp.model_load({
|
|
modelPath: '/models/performance_estimator.model'
|
|
});
|
|
|
|
this.models.pattern_recognizer = await mcp.model_load({
|
|
modelPath: '/models/pattern_recognizer.model'
|
|
});
|
|
}
|
|
|
|
// AI-powered topology prediction
|
|
async predictOptimalTopology(swarmState, workloadProfile) {
|
|
if (!this.models.topology_predictor) {
|
|
await this.initializeModels();
|
|
}
|
|
|
|
// Prepare input features
|
|
const features = this.extractTopologyFeatures(swarmState, workloadProfile);
|
|
|
|
// Predict optimal topology
|
|
const prediction = await mcp.neural_predict({
|
|
modelId: this.models.topology_predictor.id,
|
|
input: JSON.stringify(features)
|
|
});
|
|
|
|
return {
|
|
predictedTopology: prediction.topology,
|
|
confidence: prediction.confidence,
|
|
expectedImprovement: prediction.improvement,
|
|
reasoning: prediction.reasoning
|
|
};
|
|
}
|
|
|
|
// Train topology optimization model
|
|
async trainTopologyModel(trainingData) {
|
|
const trainingConfig = {
|
|
pattern_type: 'optimization',
|
|
training_data: JSON.stringify(trainingData),
|
|
epochs: 100
|
|
};
|
|
|
|
const trainingResult = await mcp.neural_train(trainingConfig);
|
|
|
|
// Save trained model
|
|
if (trainingResult.success) {
|
|
await mcp.model_save({
|
|
modelId: trainingResult.modelId,
|
|
path: '/models/topology_optimizer.model'
|
|
});
|
|
}
|
|
|
|
return trainingResult;
|
|
}
|
|
}
|
|
```
|
|
|
|
## Advanced Optimization Algorithms
|
|
|
|
### 1. Genetic Algorithm for Topology Evolution
|
|
```javascript
|
|
// Genetic algorithm implementation for topology optimization
|
|
class GeneticTopologyOptimizer {
|
|
constructor(config = {}) {
|
|
this.populationSize = config.populationSize || 50;
|
|
this.mutationRate = config.mutationRate || 0.1;
|
|
this.crossoverRate = config.crossoverRate || 0.8;
|
|
this.maxGenerations = config.maxGenerations || 100;
|
|
this.eliteSize = config.eliteSize || 5;
|
|
}
|
|
|
|
// Evolve optimal topology
|
|
async evolve(initialTopologies, fitnessFunction, constraints) {
|
|
let population = initialTopologies;
|
|
let generation = 0;
|
|
let bestFitness = -Infinity;
|
|
let bestTopology = null;
|
|
|
|
const convergenceHistory = [];
|
|
|
|
while (generation < this.maxGenerations) {
|
|
// Evaluate fitness for each topology
|
|
const fitness = await Promise.all(
|
|
population.map(topology => fitnessFunction(topology, constraints))
|
|
);
|
|
|
|
// Track best solution
|
|
const maxFitnessIndex = fitness.indexOf(Math.max(...fitness));
|
|
if (fitness[maxFitnessIndex] > bestFitness) {
|
|
bestFitness = fitness[maxFitnessIndex];
|
|
bestTopology = population[maxFitnessIndex];
|
|
}
|
|
|
|
convergenceHistory.push({
|
|
generation,
|
|
bestFitness,
|
|
averageFitness: fitness.reduce((a, b) => a + b) / fitness.length
|
|
});
|
|
|
|
// Selection
|
|
const selected = this.selection(population, fitness);
|
|
|
|
// Crossover
|
|
const offspring = await this.crossover(selected);
|
|
|
|
// Mutation
|
|
const mutated = await this.mutation(offspring, constraints);
|
|
|
|
// Next generation
|
|
population = this.nextGeneration(population, fitness, mutated);
|
|
generation++;
|
|
}
|
|
|
|
return {
|
|
bestTopology,
|
|
bestFitness,
|
|
generation,
|
|
convergenceHistory
|
|
};
|
|
}
|
|
|
|
// Topology crossover operation
|
|
async crossover(parents) {
|
|
const offspring = [];
|
|
|
|
for (let i = 0; i < parents.length - 1; i += 2) {
|
|
if (Math.random() < this.crossoverRate) {
|
|
const [child1, child2] = await this.crossoverTopologies(
|
|
parents[i],
|
|
parents[i + 1]
|
|
);
|
|
offspring.push(child1, child2);
|
|
} else {
|
|
offspring.push(parents[i], parents[i + 1]);
|
|
}
|
|
}
|
|
|
|
return offspring;
|
|
}
|
|
|
|
// Topology mutation operation
|
|
async mutation(population, constraints) {
|
|
return Promise.all(
|
|
population.map(async topology => {
|
|
if (Math.random() < this.mutationRate) {
|
|
return await this.mutateTopology(topology, constraints);
|
|
}
|
|
return topology;
|
|
})
|
|
);
|
|
}
|
|
}
|
|
```
|
|
|
|
### 2. Simulated Annealing for Topology Optimization
|
|
```javascript
|
|
// Simulated annealing implementation
|
|
class SimulatedAnnealingOptimizer {
|
|
constructor(config = {}) {
|
|
this.initialTemperature = config.initialTemperature || 1000;
|
|
this.coolingRate = config.coolingRate || 0.95;
|
|
this.minTemperature = config.minTemperature || 1;
|
|
this.maxIterations = config.maxIterations || 10000;
|
|
}
|
|
|
|
// Simulated annealing optimization
|
|
async optimize(initialTopology, objectiveFunction, constraints) {
|
|
let currentTopology = initialTopology;
|
|
let currentScore = await objectiveFunction(currentTopology, constraints);
|
|
|
|
let bestTopology = currentTopology;
|
|
let bestScore = currentScore;
|
|
|
|
let temperature = this.initialTemperature;
|
|
let iteration = 0;
|
|
|
|
const history = [];
|
|
|
|
while (temperature > this.minTemperature && iteration < this.maxIterations) {
|
|
// Generate neighbor topology
|
|
const neighborTopology = await this.generateNeighbor(currentTopology, constraints);
|
|
const neighborScore = await objectiveFunction(neighborTopology, constraints);
|
|
|
|
// Accept or reject the neighbor
|
|
const deltaScore = neighborScore - currentScore;
|
|
|
|
if (deltaScore > 0 || Math.random() < Math.exp(deltaScore / temperature)) {
|
|
currentTopology = neighborTopology;
|
|
currentScore = neighborScore;
|
|
|
|
// Update best solution
|
|
if (neighborScore > bestScore) {
|
|
bestTopology = neighborTopology;
|
|
bestScore = neighborScore;
|
|
}
|
|
}
|
|
|
|
// Record history
|
|
history.push({
|
|
iteration,
|
|
temperature,
|
|
currentScore,
|
|
bestScore
|
|
});
|
|
|
|
// Cool down
|
|
temperature *= this.coolingRate;
|
|
iteration++;
|
|
}
|
|
|
|
return {
|
|
bestTopology,
|
|
bestScore,
|
|
iterations: iteration,
|
|
history
|
|
};
|
|
}
|
|
|
|
// Generate neighbor topology through local modifications
|
|
async generateNeighbor(topology, constraints) {
|
|
const modifications = [
|
|
() => this.addConnection(topology, constraints),
|
|
() => this.removeConnection(topology, constraints),
|
|
() => this.modifyConnection(topology, constraints),
|
|
() => this.relocateAgent(topology, constraints)
|
|
];
|
|
|
|
const modification = modifications[Math.floor(Math.random() * modifications.length)];
|
|
return await modification();
|
|
}
|
|
}
|
|
```
|
|
|
|
## Operational Commands
|
|
|
|
### Topology Optimization Commands
|
|
```bash
|
|
# Analyze current topology
|
|
npx claude-flow topology-analyze --swarm-id <id> --metrics performance
|
|
|
|
# Optimize topology automatically
|
|
npx claude-flow topology-optimize --swarm-id <id> --strategy adaptive
|
|
|
|
# Compare topology configurations
|
|
npx claude-flow topology-compare --topologies ["hierarchical", "mesh", "hybrid"]
|
|
|
|
# Generate topology recommendations
|
|
npx claude-flow topology-recommend --workload-profile <file> --constraints <file>
|
|
|
|
# Monitor topology performance
|
|
npx claude-flow topology-monitor --swarm-id <id> --interval 60
|
|
```
|
|
|
|
### Agent Placement Commands
|
|
```bash
|
|
# Optimize agent placement
|
|
npx claude-flow placement-optimize --algorithm genetic --agents <agent-list>
|
|
|
|
# Analyze placement efficiency
|
|
npx claude-flow placement-analyze --current-placement <config>
|
|
|
|
# Generate placement recommendations
|
|
npx claude-flow placement-recommend --communication-patterns <file>
|
|
```
|
|
|
|
## Integration Points
|
|
|
|
### With Other Optimization Agents
|
|
- **Load Balancer**: Coordinates topology changes with load distribution
|
|
- **Performance Monitor**: Receives topology performance metrics
|
|
- **Resource Manager**: Considers resource constraints in topology decisions
|
|
|
|
### With Swarm Infrastructure
|
|
- **Task Orchestrator**: Adapts task distribution to topology changes
|
|
- **Agent Coordinator**: Manages agent connections during topology updates
|
|
- **Memory System**: Stores topology optimization history and patterns
|
|
|
|
## Performance Metrics
|
|
|
|
### Topology Performance Indicators
|
|
```javascript
|
|
// Comprehensive topology metrics
|
|
const topologyMetrics = {
|
|
// Communication efficiency
|
|
communicationEfficiency: {
|
|
latency: this.calculateAverageLatency(),
|
|
throughput: this.calculateThroughput(),
|
|
bandwidth_utilization: this.calculateBandwidthUtilization(),
|
|
message_overhead: this.calculateMessageOverhead()
|
|
},
|
|
|
|
// Network topology metrics
|
|
networkMetrics: {
|
|
diameter: this.calculateNetworkDiameter(),
|
|
clustering_coefficient: this.calculateClusteringCoefficient(),
|
|
betweenness_centrality: this.calculateBetweennessCentrality(),
|
|
degree_distribution: this.calculateDegreeDistribution()
|
|
},
|
|
|
|
// Fault tolerance
|
|
faultTolerance: {
|
|
connectivity: this.calculateConnectivity(),
|
|
redundancy: this.calculateRedundancy(),
|
|
single_point_failures: this.identifySinglePointFailures(),
|
|
recovery_time: this.calculateRecoveryTime()
|
|
},
|
|
|
|
// Scalability metrics
|
|
scalability: {
|
|
growth_capacity: this.calculateGrowthCapacity(),
|
|
scaling_efficiency: this.calculateScalingEfficiency(),
|
|
bottleneck_points: this.identifyBottleneckPoints(),
|
|
optimal_size: this.calculateOptimalSize()
|
|
}
|
|
};
|
|
```
|
|
|
|
This Topology Optimizer agent provides sophisticated swarm topology optimization with AI-powered decision making, advanced algorithms, and comprehensive performance monitoring for optimal swarm coordination. |