Restructured project from nested workspace pattern to flat single-repo layout. This eliminates redundant nesting and consolidates all project files under version control. ## Migration Summary **Before:** ``` alex/ (workspace, not versioned) ├── chess-game/ (git repo) │ ├── js/, css/, tests/ │ └── index.html └── docs/ (planning, not versioned) ``` **After:** ``` alex/ (git repo, everything versioned) ├── js/, css/, tests/ ├── index.html ├── docs/ (project documentation) ├── planning/ (historical planning docs) ├── .gitea/ (CI/CD) └── CLAUDE.md (configuration) ``` ## Changes Made ### Structure Consolidation - Moved all chess-game/ contents to root level - Removed redundant chess-game/ subdirectory - Flattened directory structure (eliminated one nesting level) ### Documentation Organization - Moved chess-game/docs/ → docs/ (project documentation) - Moved alex/docs/ → planning/ (historical planning documents) - Added CLAUDE.md (workspace configuration) - Added IMPLEMENTATION_PROMPT.md (original project prompt) ### Version Control Improvements - All project files now under version control - Planning documents preserved in planning/ folder - Merged .gitignore files (workspace + project) - Added .claude/ agent configurations ### File Updates - Updated .gitignore to include both workspace and project excludes - Moved README.md to root level - All import paths remain functional (relative paths unchanged) ## Benefits ✅ **Simpler Structure** - One level of nesting removed ✅ **Complete Versioning** - All documentation now in git ✅ **Standard Layout** - Matches open-source project conventions ✅ **Easier Navigation** - Direct access to all project files ✅ **CI/CD Compatible** - All workflows still functional ## Technical Validation - ✅ Node.js environment verified - ✅ Dependencies installed successfully - ✅ Dev server starts and responds - ✅ All core files present and accessible - ✅ Git repository functional ## Files Preserved **Implementation Files:** - js/ (3,517 lines of code) - css/ (4 stylesheets) - tests/ (87 test cases) - index.html - package.json **CI/CD Pipeline:** - .gitea/workflows/ci.yml - .gitea/workflows/release.yml **Documentation:** - docs/ (12+ documentation files) - planning/ (historical planning materials) - README.md **Configuration:** - jest.config.js, babel.config.cjs, playwright.config.js - .gitignore (merged) - CLAUDE.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
551 lines
13 KiB
Markdown
551 lines
13 KiB
Markdown
---
|
||
name: "AgentDB Advanced Features"
|
||
description: "Master advanced AgentDB features including QUIC synchronization, multi-database management, custom distance metrics, hybrid search, and distributed systems integration. Use when building distributed AI systems, multi-agent coordination, or advanced vector search applications."
|
||
---
|
||
|
||
# AgentDB Advanced Features
|
||
|
||
## What This Skill Does
|
||
|
||
Covers advanced AgentDB capabilities for distributed systems, multi-database coordination, custom distance metrics, hybrid search (vector + metadata), QUIC synchronization, and production deployment patterns. Enables building sophisticated AI systems with sub-millisecond cross-node communication and advanced search capabilities.
|
||
|
||
**Performance**: <1ms QUIC sync, hybrid search with filters, custom distance metrics.
|
||
|
||
## Prerequisites
|
||
|
||
- Node.js 18+
|
||
- AgentDB v1.0.7+ (via agentic-flow)
|
||
- Understanding of distributed systems (for QUIC sync)
|
||
- Vector search fundamentals
|
||
|
||
---
|
||
|
||
## QUIC Synchronization
|
||
|
||
### What is QUIC Sync?
|
||
|
||
QUIC (Quick UDP Internet Connections) enables sub-millisecond latency synchronization between AgentDB instances across network boundaries with automatic retry, multiplexing, and encryption.
|
||
|
||
**Benefits**:
|
||
- <1ms latency between nodes
|
||
- Multiplexed streams (multiple operations simultaneously)
|
||
- Built-in encryption (TLS 1.3)
|
||
- Automatic retry and recovery
|
||
- Event-based broadcasting
|
||
|
||
### Enable QUIC Sync
|
||
|
||
```typescript
|
||
import { createAgentDBAdapter } from 'agentic-flow/reasoningbank';
|
||
|
||
// Initialize with QUIC synchronization
|
||
const adapter = await createAgentDBAdapter({
|
||
dbPath: '.agentdb/distributed.db',
|
||
enableQUICSync: true,
|
||
syncPort: 4433,
|
||
syncPeers: [
|
||
'192.168.1.10:4433',
|
||
'192.168.1.11:4433',
|
||
'192.168.1.12:4433',
|
||
],
|
||
});
|
||
|
||
// Patterns automatically sync across all peers
|
||
await adapter.insertPattern({
|
||
// ... pattern data
|
||
});
|
||
|
||
// Available on all peers within ~1ms
|
||
```
|
||
|
||
### QUIC Configuration
|
||
|
||
```typescript
|
||
const adapter = await createAgentDBAdapter({
|
||
enableQUICSync: true,
|
||
syncPort: 4433, // QUIC server port
|
||
syncPeers: ['host1:4433'], // Peer addresses
|
||
syncInterval: 1000, // Sync interval (ms)
|
||
syncBatchSize: 100, // Patterns per batch
|
||
maxRetries: 3, // Retry failed syncs
|
||
compression: true, // Enable compression
|
||
});
|
||
```
|
||
|
||
### Multi-Node Deployment
|
||
|
||
```bash
|
||
# Node 1 (192.168.1.10)
|
||
AGENTDB_QUIC_SYNC=true \
|
||
AGENTDB_QUIC_PORT=4433 \
|
||
AGENTDB_QUIC_PEERS=192.168.1.11:4433,192.168.1.12:4433 \
|
||
node server.js
|
||
|
||
# Node 2 (192.168.1.11)
|
||
AGENTDB_QUIC_SYNC=true \
|
||
AGENTDB_QUIC_PORT=4433 \
|
||
AGENTDB_QUIC_PEERS=192.168.1.10:4433,192.168.1.12:4433 \
|
||
node server.js
|
||
|
||
# Node 3 (192.168.1.12)
|
||
AGENTDB_QUIC_SYNC=true \
|
||
AGENTDB_QUIC_PORT=4433 \
|
||
AGENTDB_QUIC_PEERS=192.168.1.10:4433,192.168.1.11:4433 \
|
||
node server.js
|
||
```
|
||
|
||
---
|
||
|
||
## Distance Metrics
|
||
|
||
### Cosine Similarity (Default)
|
||
|
||
Best for normalized vectors, semantic similarity:
|
||
|
||
```bash
|
||
# CLI
|
||
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m cosine
|
||
|
||
# API
|
||
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
|
||
metric: 'cosine',
|
||
k: 10,
|
||
});
|
||
```
|
||
|
||
**Use Cases**:
|
||
- Text embeddings (BERT, GPT, etc.)
|
||
- Semantic search
|
||
- Document similarity
|
||
- Most general-purpose applications
|
||
|
||
**Formula**: `cos(θ) = (A · B) / (||A|| × ||B||)`
|
||
**Range**: [-1, 1] (1 = identical, -1 = opposite)
|
||
|
||
### Euclidean Distance (L2)
|
||
|
||
Best for spatial data, geometric similarity:
|
||
|
||
```bash
|
||
# CLI
|
||
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m euclidean
|
||
|
||
# API
|
||
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
|
||
metric: 'euclidean',
|
||
k: 10,
|
||
});
|
||
```
|
||
|
||
**Use Cases**:
|
||
- Image embeddings
|
||
- Spatial data
|
||
- Computer vision
|
||
- When vector magnitude matters
|
||
|
||
**Formula**: `d = √(Σ(ai - bi)²)`
|
||
**Range**: [0, ∞] (0 = identical, ∞ = very different)
|
||
|
||
### Dot Product
|
||
|
||
Best for pre-normalized vectors, fast computation:
|
||
|
||
```bash
|
||
# CLI
|
||
npx agentdb@latest query ./vectors.db "[0.1,0.2,...]" -m dot
|
||
|
||
# API
|
||
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
|
||
metric: 'dot',
|
||
k: 10,
|
||
});
|
||
```
|
||
|
||
**Use Cases**:
|
||
- Pre-normalized embeddings
|
||
- Fast similarity computation
|
||
- When vectors are already unit-length
|
||
|
||
**Formula**: `dot = Σ(ai × bi)`
|
||
**Range**: [-∞, ∞] (higher = more similar)
|
||
|
||
### Custom Distance Metrics
|
||
|
||
```typescript
|
||
// Implement custom distance function
|
||
function customDistance(vec1: number[], vec2: number[]): number {
|
||
// Weighted Euclidean distance
|
||
const weights = [1.0, 2.0, 1.5, ...];
|
||
let sum = 0;
|
||
for (let i = 0; i < vec1.length; i++) {
|
||
sum += weights[i] * Math.pow(vec1[i] - vec2[i], 2);
|
||
}
|
||
return Math.sqrt(sum);
|
||
}
|
||
|
||
// Use in search (requires custom implementation)
|
||
```
|
||
|
||
---
|
||
|
||
## Hybrid Search (Vector + Metadata)
|
||
|
||
### Basic Hybrid Search
|
||
|
||
Combine vector similarity with metadata filtering:
|
||
|
||
```typescript
|
||
// Store documents with metadata
|
||
await adapter.insertPattern({
|
||
id: '',
|
||
type: 'document',
|
||
domain: 'research-papers',
|
||
pattern_data: JSON.stringify({
|
||
embedding: documentEmbedding,
|
||
text: documentText,
|
||
metadata: {
|
||
author: 'Jane Smith',
|
||
year: 2025,
|
||
category: 'machine-learning',
|
||
citations: 150,
|
||
}
|
||
}),
|
||
confidence: 1.0,
|
||
usage_count: 0,
|
||
success_count: 0,
|
||
created_at: Date.now(),
|
||
last_used: Date.now(),
|
||
});
|
||
|
||
// Hybrid search: vector similarity + metadata filters
|
||
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
|
||
domain: 'research-papers',
|
||
k: 20,
|
||
filters: {
|
||
year: { $gte: 2023 }, // Published 2023 or later
|
||
category: 'machine-learning', // ML papers only
|
||
citations: { $gte: 50 }, // Highly cited
|
||
},
|
||
});
|
||
```
|
||
|
||
### Advanced Filtering
|
||
|
||
```typescript
|
||
// Complex metadata queries
|
||
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
|
||
domain: 'products',
|
||
k: 50,
|
||
filters: {
|
||
price: { $gte: 10, $lte: 100 }, // Price range
|
||
category: { $in: ['electronics', 'gadgets'] }, // Multiple categories
|
||
rating: { $gte: 4.0 }, // High rated
|
||
inStock: true, // Available
|
||
tags: { $contains: 'wireless' }, // Has tag
|
||
},
|
||
});
|
||
```
|
||
|
||
### Weighted Hybrid Search
|
||
|
||
Combine vector and metadata scores:
|
||
|
||
```typescript
|
||
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
|
||
domain: 'content',
|
||
k: 20,
|
||
hybridWeights: {
|
||
vectorSimilarity: 0.7, // 70% weight on semantic similarity
|
||
metadataScore: 0.3, // 30% weight on metadata match
|
||
},
|
||
filters: {
|
||
category: 'technology',
|
||
recency: { $gte: Date.now() - 30 * 24 * 3600000 }, // Last 30 days
|
||
},
|
||
});
|
||
```
|
||
|
||
---
|
||
|
||
## Multi-Database Management
|
||
|
||
### Multiple Databases
|
||
|
||
```typescript
|
||
// Separate databases for different domains
|
||
const knowledgeDB = await createAgentDBAdapter({
|
||
dbPath: '.agentdb/knowledge.db',
|
||
});
|
||
|
||
const conversationDB = await createAgentDBAdapter({
|
||
dbPath: '.agentdb/conversations.db',
|
||
});
|
||
|
||
const codeDB = await createAgentDBAdapter({
|
||
dbPath: '.agentdb/code.db',
|
||
});
|
||
|
||
// Use appropriate database for each task
|
||
await knowledgeDB.insertPattern({ /* knowledge */ });
|
||
await conversationDB.insertPattern({ /* conversation */ });
|
||
await codeDB.insertPattern({ /* code */ });
|
||
```
|
||
|
||
### Database Sharding
|
||
|
||
```typescript
|
||
// Shard by domain for horizontal scaling
|
||
const shards = {
|
||
'domain-a': await createAgentDBAdapter({ dbPath: '.agentdb/shard-a.db' }),
|
||
'domain-b': await createAgentDBAdapter({ dbPath: '.agentdb/shard-b.db' }),
|
||
'domain-c': await createAgentDBAdapter({ dbPath: '.agentdb/shard-c.db' }),
|
||
};
|
||
|
||
// Route queries to appropriate shard
|
||
function getDBForDomain(domain: string) {
|
||
const shardKey = domain.split('-')[0]; // Extract shard key
|
||
return shards[shardKey] || shards['domain-a'];
|
||
}
|
||
|
||
// Insert to correct shard
|
||
const db = getDBForDomain('domain-a-task');
|
||
await db.insertPattern({ /* ... */ });
|
||
```
|
||
|
||
---
|
||
|
||
## MMR (Maximal Marginal Relevance)
|
||
|
||
Retrieve diverse results to avoid redundancy:
|
||
|
||
```typescript
|
||
// Without MMR: Similar results may be redundant
|
||
const standardResults = await adapter.retrieveWithReasoning(queryEmbedding, {
|
||
k: 10,
|
||
useMMR: false,
|
||
});
|
||
|
||
// With MMR: Diverse, non-redundant results
|
||
const diverseResults = await adapter.retrieveWithReasoning(queryEmbedding, {
|
||
k: 10,
|
||
useMMR: true,
|
||
mmrLambda: 0.5, // Balance relevance (0) vs diversity (1)
|
||
});
|
||
```
|
||
|
||
**MMR Parameters**:
|
||
- `mmrLambda = 0`: Maximum relevance (may be redundant)
|
||
- `mmrLambda = 0.5`: Balanced (default)
|
||
- `mmrLambda = 1`: Maximum diversity (may be less relevant)
|
||
|
||
**Use Cases**:
|
||
- Search result diversification
|
||
- Recommendation systems
|
||
- Avoiding echo chambers
|
||
- Exploratory search
|
||
|
||
---
|
||
|
||
## Context Synthesis
|
||
|
||
Generate rich context from multiple memories:
|
||
|
||
```typescript
|
||
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
|
||
domain: 'problem-solving',
|
||
k: 10,
|
||
synthesizeContext: true, // Enable context synthesis
|
||
});
|
||
|
||
// ContextSynthesizer creates coherent narrative
|
||
console.log('Synthesized Context:', result.context);
|
||
// "Based on 10 similar problem-solving attempts, the most effective
|
||
// approach involves: 1) analyzing root cause, 2) brainstorming solutions,
|
||
// 3) evaluating trade-offs, 4) implementing incrementally. Success rate: 85%"
|
||
|
||
console.log('Patterns:', result.patterns);
|
||
// Extracted common patterns across memories
|
||
```
|
||
|
||
---
|
||
|
||
## Production Patterns
|
||
|
||
### Connection Pooling
|
||
|
||
```typescript
|
||
// Singleton pattern for shared adapter
|
||
class AgentDBPool {
|
||
private static instance: AgentDBAdapter;
|
||
|
||
static async getInstance() {
|
||
if (!this.instance) {
|
||
this.instance = await createAgentDBAdapter({
|
||
dbPath: '.agentdb/production.db',
|
||
quantizationType: 'scalar',
|
||
cacheSize: 2000,
|
||
});
|
||
}
|
||
return this.instance;
|
||
}
|
||
}
|
||
|
||
// Use in application
|
||
const db = await AgentDBPool.getInstance();
|
||
const results = await db.retrieveWithReasoning(queryEmbedding, { k: 10 });
|
||
```
|
||
|
||
### Error Handling
|
||
|
||
```typescript
|
||
async function safeRetrieve(queryEmbedding: number[], options: any) {
|
||
try {
|
||
const result = await adapter.retrieveWithReasoning(queryEmbedding, options);
|
||
return result;
|
||
} catch (error) {
|
||
if (error.code === 'DIMENSION_MISMATCH') {
|
||
console.error('Query embedding dimension mismatch');
|
||
// Handle dimension error
|
||
} else if (error.code === 'DATABASE_LOCKED') {
|
||
// Retry with exponential backoff
|
||
await new Promise(resolve => setTimeout(resolve, 100));
|
||
return safeRetrieve(queryEmbedding, options);
|
||
}
|
||
throw error;
|
||
}
|
||
}
|
||
```
|
||
|
||
### Monitoring and Logging
|
||
|
||
```typescript
|
||
// Performance monitoring
|
||
const startTime = Date.now();
|
||
const result = await adapter.retrieveWithReasoning(queryEmbedding, { k: 10 });
|
||
const latency = Date.now() - startTime;
|
||
|
||
if (latency > 100) {
|
||
console.warn('Slow query detected:', latency, 'ms');
|
||
}
|
||
|
||
// Log statistics
|
||
const stats = await adapter.getStats();
|
||
console.log('Database Stats:', {
|
||
totalPatterns: stats.totalPatterns,
|
||
dbSize: stats.dbSize,
|
||
cacheHitRate: stats.cacheHitRate,
|
||
avgSearchLatency: stats.avgSearchLatency,
|
||
});
|
||
```
|
||
|
||
---
|
||
|
||
## CLI Advanced Operations
|
||
|
||
### Database Import/Export
|
||
|
||
```bash
|
||
# Export with compression
|
||
npx agentdb@latest export ./vectors.db ./backup.json.gz --compress
|
||
|
||
# Import from backup
|
||
npx agentdb@latest import ./backup.json.gz --decompress
|
||
|
||
# Merge databases
|
||
npx agentdb@latest merge ./db1.sqlite ./db2.sqlite ./merged.sqlite
|
||
```
|
||
|
||
### Database Optimization
|
||
|
||
```bash
|
||
# Vacuum database (reclaim space)
|
||
sqlite3 .agentdb/vectors.db "VACUUM;"
|
||
|
||
# Analyze for query optimization
|
||
sqlite3 .agentdb/vectors.db "ANALYZE;"
|
||
|
||
# Rebuild indices
|
||
npx agentdb@latest reindex ./vectors.db
|
||
```
|
||
|
||
---
|
||
|
||
## Environment Variables
|
||
|
||
```bash
|
||
# AgentDB configuration
|
||
AGENTDB_PATH=.agentdb/reasoningbank.db
|
||
AGENTDB_ENABLED=true
|
||
|
||
# Performance tuning
|
||
AGENTDB_QUANTIZATION=binary # binary|scalar|product|none
|
||
AGENTDB_CACHE_SIZE=2000
|
||
AGENTDB_HNSW_M=16
|
||
AGENTDB_HNSW_EF=100
|
||
|
||
# Learning plugins
|
||
AGENTDB_LEARNING=true
|
||
|
||
# Reasoning agents
|
||
AGENTDB_REASONING=true
|
||
|
||
# QUIC synchronization
|
||
AGENTDB_QUIC_SYNC=true
|
||
AGENTDB_QUIC_PORT=4433
|
||
AGENTDB_QUIC_PEERS=host1:4433,host2:4433
|
||
```
|
||
|
||
---
|
||
|
||
## Troubleshooting
|
||
|
||
### Issue: QUIC sync not working
|
||
|
||
```bash
|
||
# Check firewall allows UDP port 4433
|
||
sudo ufw allow 4433/udp
|
||
|
||
# Verify peers are reachable
|
||
ping host1
|
||
|
||
# Check QUIC logs
|
||
DEBUG=agentdb:quic node server.js
|
||
```
|
||
|
||
### Issue: Hybrid search returns no results
|
||
|
||
```typescript
|
||
// Relax filters
|
||
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
|
||
k: 100, // Increase k
|
||
filters: {
|
||
// Remove or relax filters
|
||
},
|
||
});
|
||
```
|
||
|
||
### Issue: Memory consolidation too aggressive
|
||
|
||
```typescript
|
||
// Disable automatic optimization
|
||
const result = await adapter.retrieveWithReasoning(queryEmbedding, {
|
||
optimizeMemory: false, // Disable auto-consolidation
|
||
k: 10,
|
||
});
|
||
```
|
||
|
||
---
|
||
|
||
## Learn More
|
||
|
||
- **QUIC Protocol**: docs/quic-synchronization.pdf
|
||
- **Hybrid Search**: docs/hybrid-search-guide.md
|
||
- **GitHub**: https://github.com/ruvnet/agentic-flow/tree/main/packages/agentdb
|
||
- **Website**: https://agentdb.ruv.io
|
||
|
||
---
|
||
|
||
**Category**: Advanced / Distributed Systems
|
||
**Difficulty**: Advanced
|
||
**Estimated Time**: 45-60 minutes
|