Restructured project from nested workspace pattern to flat single-repo layout. This eliminates redundant nesting and consolidates all project files under version control. ## Migration Summary **Before:** ``` alex/ (workspace, not versioned) ├── chess-game/ (git repo) │ ├── js/, css/, tests/ │ └── index.html └── docs/ (planning, not versioned) ``` **After:** ``` alex/ (git repo, everything versioned) ├── js/, css/, tests/ ├── index.html ├── docs/ (project documentation) ├── planning/ (historical planning docs) ├── .gitea/ (CI/CD) └── CLAUDE.md (configuration) ``` ## Changes Made ### Structure Consolidation - Moved all chess-game/ contents to root level - Removed redundant chess-game/ subdirectory - Flattened directory structure (eliminated one nesting level) ### Documentation Organization - Moved chess-game/docs/ → docs/ (project documentation) - Moved alex/docs/ → planning/ (historical planning documents) - Added CLAUDE.md (workspace configuration) - Added IMPLEMENTATION_PROMPT.md (original project prompt) ### Version Control Improvements - All project files now under version control - Planning documents preserved in planning/ folder - Merged .gitignore files (workspace + project) - Added .claude/ agent configurations ### File Updates - Updated .gitignore to include both workspace and project excludes - Moved README.md to root level - All import paths remain functional (relative paths unchanged) ## Benefits ✅ **Simpler Structure** - One level of nesting removed ✅ **Complete Versioning** - All documentation now in git ✅ **Standard Layout** - Matches open-source project conventions ✅ **Easier Navigation** - Direct access to all project files ✅ **CI/CD Compatible** - All workflows still functional ## Technical Validation - ✅ Node.js environment verified - ✅ Dependencies installed successfully - ✅ Dev server starts and responds - ✅ All core files present and accessible - ✅ Git repository functional ## Files Preserved **Implementation Files:** - js/ (3,517 lines of code) - css/ (4 stylesheets) - tests/ (87 test cases) - index.html - package.json **CI/CD Pipeline:** - .gitea/workflows/ci.yml - .gitea/workflows/release.yml **Documentation:** - docs/ (12+ documentation files) - planning/ (historical planning materials) - README.md **Configuration:** - jest.config.js, babel.config.cjs, playwright.config.js - .gitignore (merged) - CLAUDE.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
739 lines
16 KiB
Markdown
739 lines
16 KiB
Markdown
---
|
|
name: flow-nexus-neural
|
|
description: Train and deploy neural networks in distributed E2B sandboxes with Flow Nexus
|
|
version: 1.0.0
|
|
category: ai-ml
|
|
tags:
|
|
- neural-networks
|
|
- distributed-training
|
|
- machine-learning
|
|
- deep-learning
|
|
- flow-nexus
|
|
- e2b-sandboxes
|
|
requires_auth: true
|
|
mcp_server: flow-nexus
|
|
---
|
|
|
|
# Flow Nexus Neural Networks
|
|
|
|
Deploy, train, and manage neural networks in distributed E2B sandbox environments. Train custom models with multiple architectures (feedforward, LSTM, GAN, transformer) or use pre-built templates from the marketplace.
|
|
|
|
## Prerequisites
|
|
|
|
```bash
|
|
# Add Flow Nexus MCP server
|
|
claude mcp add flow-nexus npx flow-nexus@latest mcp start
|
|
|
|
# Register and login
|
|
npx flow-nexus@latest register
|
|
npx flow-nexus@latest login
|
|
```
|
|
|
|
## Core Capabilities
|
|
|
|
### 1. Single-Node Neural Training
|
|
|
|
Train neural networks with custom architectures and configurations.
|
|
|
|
**Available Architectures:**
|
|
- `feedforward` - Standard fully-connected networks
|
|
- `lstm` - Long Short-Term Memory for sequences
|
|
- `gan` - Generative Adversarial Networks
|
|
- `autoencoder` - Dimensionality reduction
|
|
- `transformer` - Attention-based models
|
|
|
|
**Training Tiers:**
|
|
- `nano` - Minimal resources (fast, limited)
|
|
- `mini` - Small models
|
|
- `small` - Standard models
|
|
- `medium` - Complex models
|
|
- `large` - Large-scale training
|
|
|
|
#### Example: Train Custom Classifier
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_train({
|
|
config: {
|
|
architecture: {
|
|
type: "feedforward",
|
|
layers: [
|
|
{ type: "dense", units: 256, activation: "relu" },
|
|
{ type: "dropout", rate: 0.3 },
|
|
{ type: "dense", units: 128, activation: "relu" },
|
|
{ type: "dropout", rate: 0.2 },
|
|
{ type: "dense", units: 64, activation: "relu" },
|
|
{ type: "dense", units: 10, activation: "softmax" }
|
|
]
|
|
},
|
|
training: {
|
|
epochs: 100,
|
|
batch_size: 32,
|
|
learning_rate: 0.001,
|
|
optimizer: "adam"
|
|
},
|
|
divergent: {
|
|
enabled: true,
|
|
pattern: "lateral", // quantum, chaotic, associative, evolutionary
|
|
factor: 0.5
|
|
}
|
|
},
|
|
tier: "small",
|
|
user_id: "your_user_id"
|
|
})
|
|
```
|
|
|
|
#### Example: LSTM for Time Series
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_train({
|
|
config: {
|
|
architecture: {
|
|
type: "lstm",
|
|
layers: [
|
|
{ type: "lstm", units: 128, return_sequences: true },
|
|
{ type: "dropout", rate: 0.2 },
|
|
{ type: "lstm", units: 64 },
|
|
{ type: "dense", units: 1, activation: "linear" }
|
|
]
|
|
},
|
|
training: {
|
|
epochs: 150,
|
|
batch_size: 64,
|
|
learning_rate: 0.01,
|
|
optimizer: "adam"
|
|
}
|
|
},
|
|
tier: "medium"
|
|
})
|
|
```
|
|
|
|
#### Example: Transformer Architecture
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_train({
|
|
config: {
|
|
architecture: {
|
|
type: "transformer",
|
|
layers: [
|
|
{ type: "embedding", vocab_size: 10000, embedding_dim: 512 },
|
|
{ type: "transformer_encoder", num_heads: 8, ff_dim: 2048 },
|
|
{ type: "global_average_pooling" },
|
|
{ type: "dense", units: 128, activation: "relu" },
|
|
{ type: "dense", units: 2, activation: "softmax" }
|
|
]
|
|
},
|
|
training: {
|
|
epochs: 50,
|
|
batch_size: 16,
|
|
learning_rate: 0.0001,
|
|
optimizer: "adam"
|
|
}
|
|
},
|
|
tier: "large"
|
|
})
|
|
```
|
|
|
|
### 2. Model Inference
|
|
|
|
Run predictions on trained models.
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_predict({
|
|
model_id: "model_abc123",
|
|
input: [
|
|
[0.5, 0.3, 0.2, 0.1],
|
|
[0.8, 0.1, 0.05, 0.05],
|
|
[0.2, 0.6, 0.15, 0.05]
|
|
],
|
|
user_id: "your_user_id"
|
|
})
|
|
```
|
|
|
|
**Response:**
|
|
```json
|
|
{
|
|
"predictions": [
|
|
[0.12, 0.85, 0.03],
|
|
[0.89, 0.08, 0.03],
|
|
[0.05, 0.92, 0.03]
|
|
],
|
|
"inference_time_ms": 45,
|
|
"model_version": "1.0.0"
|
|
}
|
|
```
|
|
|
|
### 3. Template Marketplace
|
|
|
|
Browse and deploy pre-trained models from the marketplace.
|
|
|
|
#### List Available Templates
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_list_templates({
|
|
category: "classification", // timeseries, regression, nlp, vision, anomaly, generative
|
|
tier: "free", // or "paid"
|
|
search: "sentiment",
|
|
limit: 20
|
|
})
|
|
```
|
|
|
|
**Response:**
|
|
```json
|
|
{
|
|
"templates": [
|
|
{
|
|
"id": "sentiment-analysis-v2",
|
|
"name": "Sentiment Analysis Classifier",
|
|
"description": "Pre-trained BERT model for sentiment analysis",
|
|
"category": "nlp",
|
|
"accuracy": 0.94,
|
|
"downloads": 1523,
|
|
"tier": "free"
|
|
},
|
|
{
|
|
"id": "image-classifier-resnet",
|
|
"name": "ResNet Image Classifier",
|
|
"description": "ResNet-50 for image classification",
|
|
"category": "vision",
|
|
"accuracy": 0.96,
|
|
"downloads": 2341,
|
|
"tier": "paid"
|
|
}
|
|
]
|
|
}
|
|
```
|
|
|
|
#### Deploy Template
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_deploy_template({
|
|
template_id: "sentiment-analysis-v2",
|
|
custom_config: {
|
|
training: {
|
|
epochs: 50,
|
|
learning_rate: 0.0001
|
|
}
|
|
},
|
|
user_id: "your_user_id"
|
|
})
|
|
```
|
|
|
|
### 4. Distributed Training Clusters
|
|
|
|
Train large models across multiple E2B sandboxes with distributed computing.
|
|
|
|
#### Initialize Cluster
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_cluster_init({
|
|
name: "large-model-cluster",
|
|
architecture: "transformer", // transformer, cnn, rnn, gnn, hybrid
|
|
topology: "mesh", // mesh, ring, star, hierarchical
|
|
consensus: "proof-of-learning", // byzantine, raft, gossip
|
|
daaEnabled: true, // Decentralized Autonomous Agents
|
|
wasmOptimization: true
|
|
})
|
|
```
|
|
|
|
**Response:**
|
|
```json
|
|
{
|
|
"cluster_id": "cluster_xyz789",
|
|
"name": "large-model-cluster",
|
|
"status": "initializing",
|
|
"topology": "mesh",
|
|
"max_nodes": 100,
|
|
"created_at": "2025-10-19T10:30:00Z"
|
|
}
|
|
```
|
|
|
|
#### Deploy Worker Nodes
|
|
|
|
```javascript
|
|
// Deploy parameter server
|
|
mcp__flow-nexus__neural_node_deploy({
|
|
cluster_id: "cluster_xyz789",
|
|
node_type: "parameter_server",
|
|
model: "large",
|
|
template: "nodejs",
|
|
capabilities: ["parameter_management", "gradient_aggregation"],
|
|
autonomy: 0.8
|
|
})
|
|
|
|
// Deploy worker nodes
|
|
mcp__flow-nexus__neural_node_deploy({
|
|
cluster_id: "cluster_xyz789",
|
|
node_type: "worker",
|
|
model: "xl",
|
|
role: "worker",
|
|
capabilities: ["training", "inference"],
|
|
layers: [
|
|
{ type: "transformer_encoder", num_heads: 16 },
|
|
{ type: "feed_forward", units: 4096 }
|
|
],
|
|
autonomy: 0.9
|
|
})
|
|
|
|
// Deploy aggregator
|
|
mcp__flow-nexus__neural_node_deploy({
|
|
cluster_id: "cluster_xyz789",
|
|
node_type: "aggregator",
|
|
model: "large",
|
|
capabilities: ["gradient_aggregation", "model_synchronization"]
|
|
})
|
|
```
|
|
|
|
#### Connect Cluster Topology
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_cluster_connect({
|
|
cluster_id: "cluster_xyz789",
|
|
topology: "mesh" // Override default if needed
|
|
})
|
|
```
|
|
|
|
#### Start Distributed Training
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_train_distributed({
|
|
cluster_id: "cluster_xyz789",
|
|
dataset: "imagenet", // or custom dataset identifier
|
|
epochs: 100,
|
|
batch_size: 128,
|
|
learning_rate: 0.001,
|
|
optimizer: "adam", // sgd, rmsprop, adagrad
|
|
federated: true // Enable federated learning
|
|
})
|
|
```
|
|
|
|
**Federated Learning Example:**
|
|
```javascript
|
|
mcp__flow-nexus__neural_train_distributed({
|
|
cluster_id: "cluster_xyz789",
|
|
dataset: "medical_images_distributed",
|
|
epochs: 200,
|
|
batch_size: 64,
|
|
learning_rate: 0.0001,
|
|
optimizer: "adam",
|
|
federated: true, // Data stays on local nodes
|
|
aggregation_rounds: 50,
|
|
min_nodes_per_round: 5
|
|
})
|
|
```
|
|
|
|
#### Monitor Cluster Status
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_cluster_status({
|
|
cluster_id: "cluster_xyz789"
|
|
})
|
|
```
|
|
|
|
**Response:**
|
|
```json
|
|
{
|
|
"cluster_id": "cluster_xyz789",
|
|
"status": "training",
|
|
"nodes": [
|
|
{
|
|
"node_id": "node_001",
|
|
"type": "parameter_server",
|
|
"status": "active",
|
|
"cpu_usage": 0.75,
|
|
"memory_usage": 0.82
|
|
},
|
|
{
|
|
"node_id": "node_002",
|
|
"type": "worker",
|
|
"status": "active",
|
|
"training_progress": 0.45
|
|
}
|
|
],
|
|
"training_metrics": {
|
|
"current_epoch": 45,
|
|
"total_epochs": 100,
|
|
"loss": 0.234,
|
|
"accuracy": 0.891
|
|
}
|
|
}
|
|
```
|
|
|
|
#### Run Distributed Inference
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_predict_distributed({
|
|
cluster_id: "cluster_xyz789",
|
|
input_data: JSON.stringify([
|
|
[0.1, 0.2, 0.3],
|
|
[0.4, 0.5, 0.6]
|
|
]),
|
|
aggregation: "ensemble" // mean, majority, weighted, ensemble
|
|
})
|
|
```
|
|
|
|
#### Terminate Cluster
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_cluster_terminate({
|
|
cluster_id: "cluster_xyz789"
|
|
})
|
|
```
|
|
|
|
### 5. Model Management
|
|
|
|
#### List Your Models
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_list_models({
|
|
user_id: "your_user_id",
|
|
include_public: true
|
|
})
|
|
```
|
|
|
|
**Response:**
|
|
```json
|
|
{
|
|
"models": [
|
|
{
|
|
"model_id": "model_abc123",
|
|
"name": "Custom Classifier v1",
|
|
"architecture": "feedforward",
|
|
"accuracy": 0.92,
|
|
"created_at": "2025-10-15T14:20:00Z",
|
|
"status": "trained"
|
|
},
|
|
{
|
|
"model_id": "model_def456",
|
|
"name": "LSTM Forecaster",
|
|
"architecture": "lstm",
|
|
"mse": 0.0045,
|
|
"created_at": "2025-10-18T09:15:00Z",
|
|
"status": "training"
|
|
}
|
|
]
|
|
}
|
|
```
|
|
|
|
#### Check Training Status
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_training_status({
|
|
job_id: "job_training_xyz"
|
|
})
|
|
```
|
|
|
|
**Response:**
|
|
```json
|
|
{
|
|
"job_id": "job_training_xyz",
|
|
"status": "training",
|
|
"progress": 0.67,
|
|
"current_epoch": 67,
|
|
"total_epochs": 100,
|
|
"current_loss": 0.234,
|
|
"estimated_completion": "2025-10-19T12:45:00Z"
|
|
}
|
|
```
|
|
|
|
#### Performance Benchmarking
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_performance_benchmark({
|
|
model_id: "model_abc123",
|
|
benchmark_type: "comprehensive" // inference, throughput, memory, comprehensive
|
|
})
|
|
```
|
|
|
|
**Response:**
|
|
```json
|
|
{
|
|
"model_id": "model_abc123",
|
|
"benchmarks": {
|
|
"inference_latency_ms": 12.5,
|
|
"throughput_qps": 8000,
|
|
"memory_usage_mb": 245,
|
|
"gpu_utilization": 0.78,
|
|
"accuracy": 0.92,
|
|
"f1_score": 0.89
|
|
},
|
|
"timestamp": "2025-10-19T11:00:00Z"
|
|
}
|
|
```
|
|
|
|
#### Create Validation Workflow
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_validation_workflow({
|
|
model_id: "model_abc123",
|
|
user_id: "your_user_id",
|
|
validation_type: "comprehensive" // performance, accuracy, robustness, comprehensive
|
|
})
|
|
```
|
|
|
|
### 6. Publishing and Marketplace
|
|
|
|
#### Publish Model as Template
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_publish_template({
|
|
model_id: "model_abc123",
|
|
name: "High-Accuracy Sentiment Classifier",
|
|
description: "Fine-tuned BERT model for sentiment analysis with 94% accuracy",
|
|
category: "nlp",
|
|
price: 0, // 0 for free, or credits amount
|
|
user_id: "your_user_id"
|
|
})
|
|
```
|
|
|
|
#### Rate a Template
|
|
|
|
```javascript
|
|
mcp__flow-nexus__neural_rate_template({
|
|
template_id: "sentiment-analysis-v2",
|
|
rating: 5,
|
|
review: "Excellent model! Achieved 95% accuracy on my dataset.",
|
|
user_id: "your_user_id"
|
|
})
|
|
```
|
|
|
|
## Common Use Cases
|
|
|
|
### Image Classification with CNN
|
|
|
|
```javascript
|
|
// Initialize cluster for large-scale image training
|
|
const cluster = await mcp__flow-nexus__neural_cluster_init({
|
|
name: "image-classification-cluster",
|
|
architecture: "cnn",
|
|
topology: "hierarchical",
|
|
wasmOptimization: true
|
|
})
|
|
|
|
// Deploy worker nodes
|
|
await mcp__flow-nexus__neural_node_deploy({
|
|
cluster_id: cluster.cluster_id,
|
|
node_type: "worker",
|
|
model: "large",
|
|
capabilities: ["training", "data_augmentation"]
|
|
})
|
|
|
|
// Start training
|
|
await mcp__flow-nexus__neural_train_distributed({
|
|
cluster_id: cluster.cluster_id,
|
|
dataset: "custom_images",
|
|
epochs: 100,
|
|
batch_size: 64,
|
|
learning_rate: 0.001,
|
|
optimizer: "adam"
|
|
})
|
|
```
|
|
|
|
### NLP Sentiment Analysis
|
|
|
|
```javascript
|
|
// Use pre-built template
|
|
const deployment = await mcp__flow-nexus__neural_deploy_template({
|
|
template_id: "sentiment-analysis-v2",
|
|
custom_config: {
|
|
training: {
|
|
epochs: 30,
|
|
batch_size: 16
|
|
}
|
|
}
|
|
})
|
|
|
|
// Run inference
|
|
const result = await mcp__flow-nexus__neural_predict({
|
|
model_id: deployment.model_id,
|
|
input: ["This product is amazing!", "Terrible experience."]
|
|
})
|
|
```
|
|
|
|
### Time Series Forecasting
|
|
|
|
```javascript
|
|
// Train LSTM model
|
|
const training = await mcp__flow-nexus__neural_train({
|
|
config: {
|
|
architecture: {
|
|
type: "lstm",
|
|
layers: [
|
|
{ type: "lstm", units: 128, return_sequences: true },
|
|
{ type: "dropout", rate: 0.2 },
|
|
{ type: "lstm", units: 64 },
|
|
{ type: "dense", units: 1 }
|
|
]
|
|
},
|
|
training: {
|
|
epochs: 150,
|
|
batch_size: 64,
|
|
learning_rate: 0.01,
|
|
optimizer: "adam"
|
|
}
|
|
},
|
|
tier: "medium"
|
|
})
|
|
|
|
// Monitor progress
|
|
const status = await mcp__flow-nexus__neural_training_status({
|
|
job_id: training.job_id
|
|
})
|
|
```
|
|
|
|
### Federated Learning for Privacy
|
|
|
|
```javascript
|
|
// Initialize federated cluster
|
|
const cluster = await mcp__flow-nexus__neural_cluster_init({
|
|
name: "federated-medical-cluster",
|
|
architecture: "transformer",
|
|
topology: "mesh",
|
|
consensus: "proof-of-learning",
|
|
daaEnabled: true
|
|
})
|
|
|
|
// Deploy nodes across different locations
|
|
for (let i = 0; i < 5; i++) {
|
|
await mcp__flow-nexus__neural_node_deploy({
|
|
cluster_id: cluster.cluster_id,
|
|
node_type: "worker",
|
|
model: "large",
|
|
autonomy: 0.9
|
|
})
|
|
}
|
|
|
|
// Train with federated learning (data never leaves nodes)
|
|
await mcp__flow-nexus__neural_train_distributed({
|
|
cluster_id: cluster.cluster_id,
|
|
dataset: "medical_records_distributed",
|
|
epochs: 200,
|
|
federated: true,
|
|
aggregation_rounds: 100
|
|
})
|
|
```
|
|
|
|
## Architecture Patterns
|
|
|
|
### Feedforward Networks
|
|
Best for: Classification, regression, simple pattern recognition
|
|
```javascript
|
|
{
|
|
type: "feedforward",
|
|
layers: [
|
|
{ type: "dense", units: 256, activation: "relu" },
|
|
{ type: "dropout", rate: 0.3 },
|
|
{ type: "dense", units: 128, activation: "relu" },
|
|
{ type: "dense", units: 10, activation: "softmax" }
|
|
]
|
|
}
|
|
```
|
|
|
|
### LSTM Networks
|
|
Best for: Time series, sequences, forecasting
|
|
```javascript
|
|
{
|
|
type: "lstm",
|
|
layers: [
|
|
{ type: "lstm", units: 128, return_sequences: true },
|
|
{ type: "lstm", units: 64 },
|
|
{ type: "dense", units: 1 }
|
|
]
|
|
}
|
|
```
|
|
|
|
### Transformers
|
|
Best for: NLP, attention mechanisms, large-scale text
|
|
```javascript
|
|
{
|
|
type: "transformer",
|
|
layers: [
|
|
{ type: "embedding", vocab_size: 10000, embedding_dim: 512 },
|
|
{ type: "transformer_encoder", num_heads: 8, ff_dim: 2048 },
|
|
{ type: "global_average_pooling" },
|
|
{ type: "dense", units: 2, activation: "softmax" }
|
|
]
|
|
}
|
|
```
|
|
|
|
### GANs
|
|
Best for: Generative tasks, image synthesis
|
|
```javascript
|
|
{
|
|
type: "gan",
|
|
generator_layers: [...],
|
|
discriminator_layers: [...]
|
|
}
|
|
```
|
|
|
|
### Autoencoders
|
|
Best for: Dimensionality reduction, anomaly detection
|
|
```javascript
|
|
{
|
|
type: "autoencoder",
|
|
encoder_layers: [
|
|
{ type: "dense", units: 128, activation: "relu" },
|
|
{ type: "dense", units: 64, activation: "relu" }
|
|
],
|
|
decoder_layers: [
|
|
{ type: "dense", units: 128, activation: "relu" },
|
|
{ type: "dense", units: input_dim, activation: "sigmoid" }
|
|
]
|
|
}
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
1. **Start Small**: Begin with `nano` or `mini` tiers for experimentation
|
|
2. **Use Templates**: Leverage marketplace templates for common tasks
|
|
3. **Monitor Training**: Check status regularly to catch issues early
|
|
4. **Benchmark Models**: Always benchmark before production deployment
|
|
5. **Distributed Training**: Use clusters for large models (>1B parameters)
|
|
6. **Federated Learning**: Use for privacy-sensitive data
|
|
7. **Version Models**: Publish successful models as templates for reuse
|
|
8. **Validate Thoroughly**: Use validation workflows before deployment
|
|
|
|
## Troubleshooting
|
|
|
|
### Training Stalled
|
|
```javascript
|
|
// Check cluster status
|
|
const status = await mcp__flow-nexus__neural_cluster_status({
|
|
cluster_id: "cluster_id"
|
|
})
|
|
|
|
// Terminate and restart if needed
|
|
await mcp__flow-nexus__neural_cluster_terminate({
|
|
cluster_id: "cluster_id"
|
|
})
|
|
```
|
|
|
|
### Low Accuracy
|
|
- Increase epochs
|
|
- Adjust learning rate
|
|
- Add regularization (dropout)
|
|
- Try different optimizer
|
|
- Use data augmentation
|
|
|
|
### Out of Memory
|
|
- Reduce batch size
|
|
- Use smaller model tier
|
|
- Enable gradient accumulation
|
|
- Use distributed training
|
|
|
|
## Related Skills
|
|
|
|
- `flow-nexus-sandbox` - E2B sandbox management
|
|
- `flow-nexus-swarm` - AI swarm orchestration
|
|
- `flow-nexus-workflow` - Workflow automation
|
|
|
|
## Resources
|
|
|
|
- Flow Nexus Docs: https://flow-nexus.ruv.io/docs
|
|
- Neural Network Guide: https://flow-nexus.ruv.io/docs/neural
|
|
- Template Marketplace: https://flow-nexus.ruv.io/templates
|
|
- API Reference: https://flow-nexus.ruv.io/api
|
|
|
|
---
|
|
|
|
**Note**: Distributed training requires authentication. Register at https://flow-nexus.ruv.io or use `npx flow-nexus@latest register`.
|