Christoph Wagner 5ad0700b41 refactor: Consolidate repository structure - flatten from workspace pattern
Restructured project from nested workspace pattern to flat single-repo layout.
This eliminates redundant nesting and consolidates all project files under version control.

## Migration Summary

**Before:**
```
alex/ (workspace, not versioned)
├── chess-game/ (git repo)
│   ├── js/, css/, tests/
│   └── index.html
└── docs/ (planning, not versioned)
```

**After:**
```
alex/ (git repo, everything versioned)
├── js/, css/, tests/
├── index.html
├── docs/ (project documentation)
├── planning/ (historical planning docs)
├── .gitea/ (CI/CD)
└── CLAUDE.md (configuration)
```

## Changes Made

### Structure Consolidation
- Moved all chess-game/ contents to root level
- Removed redundant chess-game/ subdirectory
- Flattened directory structure (eliminated one nesting level)

### Documentation Organization
- Moved chess-game/docs/ → docs/ (project documentation)
- Moved alex/docs/ → planning/ (historical planning documents)
- Added CLAUDE.md (workspace configuration)
- Added IMPLEMENTATION_PROMPT.md (original project prompt)

### Version Control Improvements
- All project files now under version control
- Planning documents preserved in planning/ folder
- Merged .gitignore files (workspace + project)
- Added .claude/ agent configurations

### File Updates
- Updated .gitignore to include both workspace and project excludes
- Moved README.md to root level
- All import paths remain functional (relative paths unchanged)

## Benefits

 **Simpler Structure** - One level of nesting removed
 **Complete Versioning** - All documentation now in git
 **Standard Layout** - Matches open-source project conventions
 **Easier Navigation** - Direct access to all project files
 **CI/CD Compatible** - All workflows still functional

## Technical Validation

-  Node.js environment verified
-  Dependencies installed successfully
-  Dev server starts and responds
-  All core files present and accessible
-  Git repository functional

## Files Preserved

**Implementation Files:**
- js/ (3,517 lines of code)
- css/ (4 stylesheets)
- tests/ (87 test cases)
- index.html
- package.json

**CI/CD Pipeline:**
- .gitea/workflows/ci.yml
- .gitea/workflows/release.yml

**Documentation:**
- docs/ (12+ documentation files)
- planning/ (historical planning materials)
- README.md

**Configuration:**
- jest.config.js, babel.config.cjs, playwright.config.js
- .gitignore (merged)
- CLAUDE.md

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-11-23 10:05:26 +01:00

202 lines
4.7 KiB
Markdown

---
name: "ReasoningBank Intelligence"
description: "Implement adaptive learning with ReasoningBank for pattern recognition, strategy optimization, and continuous improvement. Use when building self-learning agents, optimizing workflows, or implementing meta-cognitive systems."
---
# ReasoningBank Intelligence
## What This Skill Does
Implements ReasoningBank's adaptive learning system for AI agents to learn from experience, recognize patterns, and optimize strategies over time. Enables meta-cognitive capabilities and continuous improvement.
## Prerequisites
- agentic-flow v1.5.11+
- AgentDB v1.0.4+ (for persistence)
- Node.js 18+
## Quick Start
```typescript
import { ReasoningBank } from 'agentic-flow/reasoningbank';
// Initialize ReasoningBank
const rb = new ReasoningBank({
persist: true,
learningRate: 0.1,
adapter: 'agentdb' // Use AgentDB for storage
});
// Record task outcome
await rb.recordExperience({
task: 'code_review',
approach: 'static_analysis_first',
outcome: {
success: true,
metrics: {
bugs_found: 5,
time_taken: 120,
false_positives: 1
}
},
context: {
language: 'typescript',
complexity: 'medium'
}
});
// Get optimal strategy
const strategy = await rb.recommendStrategy('code_review', {
language: 'typescript',
complexity: 'high'
});
```
## Core Features
### 1. Pattern Recognition
```typescript
// Learn patterns from data
await rb.learnPattern({
pattern: 'api_errors_increase_after_deploy',
triggers: ['deployment', 'traffic_spike'],
actions: ['rollback', 'scale_up'],
confidence: 0.85
});
// Match patterns
const matches = await rb.matchPatterns(currentSituation);
```
### 2. Strategy Optimization
```typescript
// Compare strategies
const comparison = await rb.compareStrategies('bug_fixing', [
'tdd_approach',
'debug_first',
'reproduce_then_fix'
]);
// Get best strategy
const best = comparison.strategies[0];
console.log(`Best: ${best.name} (score: ${best.score})`);
```
### 3. Continuous Learning
```typescript
// Enable auto-learning from all tasks
await rb.enableAutoLearning({
threshold: 0.7, // Only learn from high-confidence outcomes
updateFrequency: 100 // Update models every 100 experiences
});
```
## Advanced Usage
### Meta-Learning
```typescript
// Learn about learning
await rb.metaLearn({
observation: 'parallel_execution_faster_for_independent_tasks',
confidence: 0.95,
applicability: {
task_types: ['batch_processing', 'data_transformation'],
conditions: ['tasks_independent', 'io_bound']
}
});
```
### Transfer Learning
```typescript
// Apply knowledge from one domain to another
await rb.transferKnowledge({
from: 'code_review_javascript',
to: 'code_review_typescript',
similarity: 0.8
});
```
### Adaptive Agents
```typescript
// Create self-improving agent
class AdaptiveAgent {
async execute(task: Task) {
// Get optimal strategy
const strategy = await rb.recommendStrategy(task.type, task.context);
// Execute with strategy
const result = await this.executeWithStrategy(task, strategy);
// Learn from outcome
await rb.recordExperience({
task: task.type,
approach: strategy.name,
outcome: result,
context: task.context
});
return result;
}
}
```
## Integration with AgentDB
```typescript
// Persist ReasoningBank data
await rb.configure({
storage: {
type: 'agentdb',
options: {
database: './reasoning-bank.db',
enableVectorSearch: true
}
}
});
// Query learned patterns
const patterns = await rb.query({
category: 'optimization',
minConfidence: 0.8,
timeRange: { last: '30d' }
});
```
## Performance Metrics
```typescript
// Track learning effectiveness
const metrics = await rb.getMetrics();
console.log(`
Total Experiences: ${metrics.totalExperiences}
Patterns Learned: ${metrics.patternsLearned}
Strategy Success Rate: ${metrics.strategySuccessRate}
Improvement Over Time: ${metrics.improvement}
`);
```
## Best Practices
1. **Record consistently**: Log all task outcomes, not just successes
2. **Provide context**: Rich context improves pattern matching
3. **Set thresholds**: Filter low-confidence learnings
4. **Review periodically**: Audit learned patterns for quality
5. **Use vector search**: Enable semantic pattern matching
## Troubleshooting
### Issue: Poor recommendations
**Solution**: Ensure sufficient training data (100+ experiences per task type)
### Issue: Slow pattern matching
**Solution**: Enable vector indexing in AgentDB
### Issue: Memory growing large
**Solution**: Set TTL for old experiences or enable pruning
## Learn More
- ReasoningBank Guide: agentic-flow/src/reasoningbank/README.md
- AgentDB Integration: packages/agentdb/docs/reasoningbank.md
- Pattern Learning: docs/reasoning/patterns.md