Restructured project from nested workspace pattern to flat single-repo layout. This eliminates redundant nesting and consolidates all project files under version control. ## Migration Summary **Before:** ``` alex/ (workspace, not versioned) ├── chess-game/ (git repo) │ ├── js/, css/, tests/ │ └── index.html └── docs/ (planning, not versioned) ``` **After:** ``` alex/ (git repo, everything versioned) ├── js/, css/, tests/ ├── index.html ├── docs/ (project documentation) ├── planning/ (historical planning docs) ├── .gitea/ (CI/CD) └── CLAUDE.md (configuration) ``` ## Changes Made ### Structure Consolidation - Moved all chess-game/ contents to root level - Removed redundant chess-game/ subdirectory - Flattened directory structure (eliminated one nesting level) ### Documentation Organization - Moved chess-game/docs/ → docs/ (project documentation) - Moved alex/docs/ → planning/ (historical planning documents) - Added CLAUDE.md (workspace configuration) - Added IMPLEMENTATION_PROMPT.md (original project prompt) ### Version Control Improvements - All project files now under version control - Planning documents preserved in planning/ folder - Merged .gitignore files (workspace + project) - Added .claude/ agent configurations ### File Updates - Updated .gitignore to include both workspace and project excludes - Moved README.md to root level - All import paths remain functional (relative paths unchanged) ## Benefits ✅ **Simpler Structure** - One level of nesting removed ✅ **Complete Versioning** - All documentation now in git ✅ **Standard Layout** - Matches open-source project conventions ✅ **Easier Navigation** - Direct access to all project files ✅ **CI/CD Compatible** - All workflows still functional ## Technical Validation - ✅ Node.js environment verified - ✅ Dependencies installed successfully - ✅ Dev server starts and responds - ✅ All core files present and accessible - ✅ Git repository functional ## Files Preserved **Implementation Files:** - js/ (3,517 lines of code) - css/ (4 stylesheets) - tests/ (87 test cases) - index.html - package.json **CI/CD Pipeline:** - .gitea/workflows/ci.yml - .gitea/workflows/release.yml **Documentation:** - docs/ (12+ documentation files) - planning/ (historical planning materials) - README.md **Configuration:** - jest.config.js, babel.config.cjs, playwright.config.js - .gitignore (merged) - CLAUDE.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
974 lines
23 KiB
Markdown
974 lines
23 KiB
Markdown
---
|
|
name: swarm-advanced
|
|
description: Advanced swarm orchestration patterns for research, development, testing, and complex distributed workflows
|
|
version: 2.0.0
|
|
category: orchestration
|
|
tags: [swarm, distributed, parallel, research, testing, development, coordination]
|
|
author: Claude Flow Team
|
|
---
|
|
|
|
# Advanced Swarm Orchestration
|
|
|
|
Master advanced swarm patterns for distributed research, development, and testing workflows. This skill covers comprehensive orchestration strategies using both MCP tools and CLI commands.
|
|
|
|
## Quick Start
|
|
|
|
### Prerequisites
|
|
```bash
|
|
# Ensure Claude Flow is installed
|
|
npm install -g claude-flow@alpha
|
|
|
|
# Add MCP server (if using MCP tools)
|
|
claude mcp add claude-flow npx claude-flow@alpha mcp start
|
|
```
|
|
|
|
### Basic Pattern
|
|
```javascript
|
|
// 1. Initialize swarm topology
|
|
mcp__claude-flow__swarm_init({ topology: "mesh", maxAgents: 6 })
|
|
|
|
// 2. Spawn specialized agents
|
|
mcp__claude-flow__agent_spawn({ type: "researcher", name: "Agent 1" })
|
|
|
|
// 3. Orchestrate tasks
|
|
mcp__claude-flow__task_orchestrate({ task: "...", strategy: "parallel" })
|
|
```
|
|
|
|
## Core Concepts
|
|
|
|
### Swarm Topologies
|
|
|
|
**Mesh Topology** - Peer-to-peer communication, best for research and analysis
|
|
- All agents communicate directly
|
|
- High flexibility and resilience
|
|
- Use for: Research, analysis, brainstorming
|
|
|
|
**Hierarchical Topology** - Coordinator with subordinates, best for development
|
|
- Clear command structure
|
|
- Sequential workflow support
|
|
- Use for: Development, structured workflows
|
|
|
|
**Star Topology** - Central coordinator, best for testing
|
|
- Centralized control and monitoring
|
|
- Parallel execution with coordination
|
|
- Use for: Testing, validation, quality assurance
|
|
|
|
**Ring Topology** - Sequential processing chain
|
|
- Step-by-step processing
|
|
- Pipeline workflows
|
|
- Use for: Multi-stage processing, data pipelines
|
|
|
|
### Agent Strategies
|
|
|
|
**Adaptive** - Dynamic adjustment based on task complexity
|
|
**Balanced** - Equal distribution of work across agents
|
|
**Specialized** - Task-specific agent assignment
|
|
**Parallel** - Maximum concurrent execution
|
|
|
|
## Pattern 1: Research Swarm
|
|
|
|
### Purpose
|
|
Deep research through parallel information gathering, analysis, and synthesis.
|
|
|
|
### Architecture
|
|
```javascript
|
|
// Initialize research swarm
|
|
mcp__claude-flow__swarm_init({
|
|
"topology": "mesh",
|
|
"maxAgents": 6,
|
|
"strategy": "adaptive"
|
|
})
|
|
|
|
// Spawn research team
|
|
const researchAgents = [
|
|
{
|
|
type: "researcher",
|
|
name: "Web Researcher",
|
|
capabilities: ["web-search", "content-extraction", "source-validation"]
|
|
},
|
|
{
|
|
type: "researcher",
|
|
name: "Academic Researcher",
|
|
capabilities: ["paper-analysis", "citation-tracking", "literature-review"]
|
|
},
|
|
{
|
|
type: "analyst",
|
|
name: "Data Analyst",
|
|
capabilities: ["data-processing", "statistical-analysis", "visualization"]
|
|
},
|
|
{
|
|
type: "analyst",
|
|
name: "Pattern Analyzer",
|
|
capabilities: ["trend-detection", "correlation-analysis", "outlier-detection"]
|
|
},
|
|
{
|
|
type: "documenter",
|
|
name: "Report Writer",
|
|
capabilities: ["synthesis", "technical-writing", "formatting"]
|
|
}
|
|
]
|
|
|
|
// Spawn all agents
|
|
researchAgents.forEach(agent => {
|
|
mcp__claude-flow__agent_spawn({
|
|
type: agent.type,
|
|
name: agent.name,
|
|
capabilities: agent.capabilities
|
|
})
|
|
})
|
|
```
|
|
|
|
### Research Workflow
|
|
|
|
#### Phase 1: Information Gathering
|
|
```javascript
|
|
// Parallel information collection
|
|
mcp__claude-flow__parallel_execute({
|
|
"tasks": [
|
|
{
|
|
"id": "web-search",
|
|
"command": "search recent publications and articles"
|
|
},
|
|
{
|
|
"id": "academic-search",
|
|
"command": "search academic databases and papers"
|
|
},
|
|
{
|
|
"id": "data-collection",
|
|
"command": "gather relevant datasets and statistics"
|
|
},
|
|
{
|
|
"id": "expert-search",
|
|
"command": "identify domain experts and thought leaders"
|
|
}
|
|
]
|
|
})
|
|
|
|
// Store research findings in memory
|
|
mcp__claude-flow__memory_usage({
|
|
"action": "store",
|
|
"key": "research-findings-" + Date.now(),
|
|
"value": JSON.stringify(findings),
|
|
"namespace": "research",
|
|
"ttl": 604800 // 7 days
|
|
})
|
|
```
|
|
|
|
#### Phase 2: Analysis and Validation
|
|
```javascript
|
|
// Pattern recognition in findings
|
|
mcp__claude-flow__pattern_recognize({
|
|
"data": researchData,
|
|
"patterns": ["trend", "correlation", "outlier", "emerging-pattern"]
|
|
})
|
|
|
|
// Cognitive analysis
|
|
mcp__claude-flow__cognitive_analyze({
|
|
"behavior": "research-synthesis"
|
|
})
|
|
|
|
// Quality assessment
|
|
mcp__claude-flow__quality_assess({
|
|
"target": "research-sources",
|
|
"criteria": ["credibility", "relevance", "recency", "authority"]
|
|
})
|
|
|
|
// Cross-reference validation
|
|
mcp__claude-flow__neural_patterns({
|
|
"action": "analyze",
|
|
"operation": "fact-checking",
|
|
"metadata": { "sources": sourcesArray }
|
|
})
|
|
```
|
|
|
|
#### Phase 3: Knowledge Management
|
|
```javascript
|
|
// Search existing knowledge base
|
|
mcp__claude-flow__memory_search({
|
|
"pattern": "topic X",
|
|
"namespace": "research",
|
|
"limit": 20
|
|
})
|
|
|
|
// Create knowledge graph connections
|
|
mcp__claude-flow__neural_patterns({
|
|
"action": "learn",
|
|
"operation": "knowledge-graph",
|
|
"metadata": {
|
|
"topic": "X",
|
|
"connections": relatedTopics,
|
|
"depth": 3
|
|
}
|
|
})
|
|
|
|
// Store connections for future use
|
|
mcp__claude-flow__memory_usage({
|
|
"action": "store",
|
|
"key": "knowledge-graph-X",
|
|
"value": JSON.stringify(knowledgeGraph),
|
|
"namespace": "research/graphs",
|
|
"ttl": 2592000 // 30 days
|
|
})
|
|
```
|
|
|
|
#### Phase 4: Report Generation
|
|
```javascript
|
|
// Orchestrate report generation
|
|
mcp__claude-flow__task_orchestrate({
|
|
"task": "generate comprehensive research report",
|
|
"strategy": "sequential",
|
|
"priority": "high",
|
|
"dependencies": ["gather", "analyze", "validate", "synthesize"]
|
|
})
|
|
|
|
// Monitor research progress
|
|
mcp__claude-flow__swarm_status({
|
|
"swarmId": "research-swarm"
|
|
})
|
|
|
|
// Generate final report
|
|
mcp__claude-flow__workflow_execute({
|
|
"workflowId": "research-report-generation",
|
|
"params": {
|
|
"findings": findings,
|
|
"format": "comprehensive",
|
|
"sections": ["executive-summary", "methodology", "findings", "analysis", "conclusions", "references"]
|
|
}
|
|
})
|
|
```
|
|
|
|
### CLI Fallback
|
|
```bash
|
|
# Quick research swarm
|
|
npx claude-flow swarm "research AI trends in 2025" \
|
|
--strategy research \
|
|
--mode distributed \
|
|
--max-agents 6 \
|
|
--parallel \
|
|
--output research-report.md
|
|
```
|
|
|
|
## Pattern 2: Development Swarm
|
|
|
|
### Purpose
|
|
Full-stack development through coordinated specialist agents.
|
|
|
|
### Architecture
|
|
```javascript
|
|
// Initialize development swarm with hierarchy
|
|
mcp__claude-flow__swarm_init({
|
|
"topology": "hierarchical",
|
|
"maxAgents": 8,
|
|
"strategy": "balanced"
|
|
})
|
|
|
|
// Spawn development team
|
|
const devTeam = [
|
|
{ type: "architect", name: "System Architect", role: "coordinator" },
|
|
{ type: "coder", name: "Backend Developer", capabilities: ["node", "api", "database"] },
|
|
{ type: "coder", name: "Frontend Developer", capabilities: ["react", "ui", "ux"] },
|
|
{ type: "coder", name: "Database Engineer", capabilities: ["sql", "nosql", "optimization"] },
|
|
{ type: "tester", name: "QA Engineer", capabilities: ["unit", "integration", "e2e"] },
|
|
{ type: "reviewer", name: "Code Reviewer", capabilities: ["security", "performance", "best-practices"] },
|
|
{ type: "documenter", name: "Technical Writer", capabilities: ["api-docs", "guides", "tutorials"] },
|
|
{ type: "monitor", name: "DevOps Engineer", capabilities: ["ci-cd", "deployment", "monitoring"] }
|
|
]
|
|
|
|
// Spawn all team members
|
|
devTeam.forEach(member => {
|
|
mcp__claude-flow__agent_spawn({
|
|
type: member.type,
|
|
name: member.name,
|
|
capabilities: member.capabilities,
|
|
swarmId: "dev-swarm"
|
|
})
|
|
})
|
|
```
|
|
|
|
### Development Workflow
|
|
|
|
#### Phase 1: Architecture and Design
|
|
```javascript
|
|
// System architecture design
|
|
mcp__claude-flow__task_orchestrate({
|
|
"task": "design system architecture for REST API",
|
|
"strategy": "sequential",
|
|
"priority": "critical",
|
|
"assignTo": "System Architect"
|
|
})
|
|
|
|
// Store architecture decisions
|
|
mcp__claude-flow__memory_usage({
|
|
"action": "store",
|
|
"key": "architecture-decisions",
|
|
"value": JSON.stringify(architectureDoc),
|
|
"namespace": "development/design"
|
|
})
|
|
```
|
|
|
|
#### Phase 2: Parallel Implementation
|
|
```javascript
|
|
// Parallel development tasks
|
|
mcp__claude-flow__parallel_execute({
|
|
"tasks": [
|
|
{
|
|
"id": "backend-api",
|
|
"command": "implement REST API endpoints",
|
|
"assignTo": "Backend Developer"
|
|
},
|
|
{
|
|
"id": "frontend-ui",
|
|
"command": "build user interface components",
|
|
"assignTo": "Frontend Developer"
|
|
},
|
|
{
|
|
"id": "database-schema",
|
|
"command": "design and implement database schema",
|
|
"assignTo": "Database Engineer"
|
|
},
|
|
{
|
|
"id": "api-documentation",
|
|
"command": "create API documentation",
|
|
"assignTo": "Technical Writer"
|
|
}
|
|
]
|
|
})
|
|
|
|
// Monitor development progress
|
|
mcp__claude-flow__swarm_monitor({
|
|
"swarmId": "dev-swarm",
|
|
"interval": 5000
|
|
})
|
|
```
|
|
|
|
#### Phase 3: Testing and Validation
|
|
```javascript
|
|
// Comprehensive testing
|
|
mcp__claude-flow__batch_process({
|
|
"items": [
|
|
{ type: "unit", target: "all-modules" },
|
|
{ type: "integration", target: "api-endpoints" },
|
|
{ type: "e2e", target: "user-flows" },
|
|
{ type: "performance", target: "critical-paths" }
|
|
],
|
|
"operation": "execute-tests"
|
|
})
|
|
|
|
// Quality assessment
|
|
mcp__claude-flow__quality_assess({
|
|
"target": "codebase",
|
|
"criteria": ["coverage", "complexity", "maintainability", "security"]
|
|
})
|
|
```
|
|
|
|
#### Phase 4: Review and Deployment
|
|
```javascript
|
|
// Code review workflow
|
|
mcp__claude-flow__workflow_execute({
|
|
"workflowId": "code-review-process",
|
|
"params": {
|
|
"reviewers": ["Code Reviewer"],
|
|
"criteria": ["security", "performance", "best-practices"]
|
|
}
|
|
})
|
|
|
|
// CI/CD pipeline
|
|
mcp__claude-flow__pipeline_create({
|
|
"config": {
|
|
"stages": ["build", "test", "security-scan", "deploy"],
|
|
"environment": "production"
|
|
}
|
|
})
|
|
```
|
|
|
|
### CLI Fallback
|
|
```bash
|
|
# Quick development swarm
|
|
npx claude-flow swarm "build REST API with authentication" \
|
|
--strategy development \
|
|
--mode hierarchical \
|
|
--monitor \
|
|
--output sqlite
|
|
```
|
|
|
|
## Pattern 3: Testing Swarm
|
|
|
|
### Purpose
|
|
Comprehensive quality assurance through distributed testing.
|
|
|
|
### Architecture
|
|
```javascript
|
|
// Initialize testing swarm with star topology
|
|
mcp__claude-flow__swarm_init({
|
|
"topology": "star",
|
|
"maxAgents": 7,
|
|
"strategy": "parallel"
|
|
})
|
|
|
|
// Spawn testing team
|
|
const testingTeam = [
|
|
{
|
|
type: "tester",
|
|
name: "Unit Test Coordinator",
|
|
capabilities: ["unit-testing", "mocking", "coverage", "tdd"]
|
|
},
|
|
{
|
|
type: "tester",
|
|
name: "Integration Tester",
|
|
capabilities: ["integration", "api-testing", "contract-testing"]
|
|
},
|
|
{
|
|
type: "tester",
|
|
name: "E2E Tester",
|
|
capabilities: ["e2e", "ui-testing", "user-flows", "selenium"]
|
|
},
|
|
{
|
|
type: "tester",
|
|
name: "Performance Tester",
|
|
capabilities: ["load-testing", "stress-testing", "benchmarking"]
|
|
},
|
|
{
|
|
type: "monitor",
|
|
name: "Security Tester",
|
|
capabilities: ["security-testing", "penetration-testing", "vulnerability-scanning"]
|
|
},
|
|
{
|
|
type: "analyst",
|
|
name: "Test Analyst",
|
|
capabilities: ["coverage-analysis", "test-optimization", "reporting"]
|
|
},
|
|
{
|
|
type: "documenter",
|
|
name: "Test Documenter",
|
|
capabilities: ["test-documentation", "test-plans", "reports"]
|
|
}
|
|
]
|
|
|
|
// Spawn all testers
|
|
testingTeam.forEach(tester => {
|
|
mcp__claude-flow__agent_spawn({
|
|
type: tester.type,
|
|
name: tester.name,
|
|
capabilities: tester.capabilities,
|
|
swarmId: "testing-swarm"
|
|
})
|
|
})
|
|
```
|
|
|
|
### Testing Workflow
|
|
|
|
#### Phase 1: Test Planning
|
|
```javascript
|
|
// Analyze test coverage requirements
|
|
mcp__claude-flow__quality_assess({
|
|
"target": "test-coverage",
|
|
"criteria": [
|
|
"line-coverage",
|
|
"branch-coverage",
|
|
"function-coverage",
|
|
"edge-cases"
|
|
]
|
|
})
|
|
|
|
// Identify test scenarios
|
|
mcp__claude-flow__pattern_recognize({
|
|
"data": testScenarios,
|
|
"patterns": [
|
|
"edge-case",
|
|
"boundary-condition",
|
|
"error-path",
|
|
"happy-path"
|
|
]
|
|
})
|
|
|
|
// Store test plan
|
|
mcp__claude-flow__memory_usage({
|
|
"action": "store",
|
|
"key": "test-plan-" + Date.now(),
|
|
"value": JSON.stringify(testPlan),
|
|
"namespace": "testing/plans"
|
|
})
|
|
```
|
|
|
|
#### Phase 2: Parallel Test Execution
|
|
```javascript
|
|
// Execute all test suites in parallel
|
|
mcp__claude-flow__parallel_execute({
|
|
"tasks": [
|
|
{
|
|
"id": "unit-tests",
|
|
"command": "npm run test:unit",
|
|
"assignTo": "Unit Test Coordinator"
|
|
},
|
|
{
|
|
"id": "integration-tests",
|
|
"command": "npm run test:integration",
|
|
"assignTo": "Integration Tester"
|
|
},
|
|
{
|
|
"id": "e2e-tests",
|
|
"command": "npm run test:e2e",
|
|
"assignTo": "E2E Tester"
|
|
},
|
|
{
|
|
"id": "performance-tests",
|
|
"command": "npm run test:performance",
|
|
"assignTo": "Performance Tester"
|
|
},
|
|
{
|
|
"id": "security-tests",
|
|
"command": "npm run test:security",
|
|
"assignTo": "Security Tester"
|
|
}
|
|
]
|
|
})
|
|
|
|
// Batch process test suites
|
|
mcp__claude-flow__batch_process({
|
|
"items": testSuites,
|
|
"operation": "execute-test-suite"
|
|
})
|
|
```
|
|
|
|
#### Phase 3: Performance and Security
|
|
```javascript
|
|
// Run performance benchmarks
|
|
mcp__claude-flow__benchmark_run({
|
|
"suite": "comprehensive-performance"
|
|
})
|
|
|
|
// Bottleneck analysis
|
|
mcp__claude-flow__bottleneck_analyze({
|
|
"component": "application",
|
|
"metrics": ["response-time", "throughput", "memory", "cpu"]
|
|
})
|
|
|
|
// Security scanning
|
|
mcp__claude-flow__security_scan({
|
|
"target": "application",
|
|
"depth": "comprehensive"
|
|
})
|
|
|
|
// Vulnerability analysis
|
|
mcp__claude-flow__error_analysis({
|
|
"logs": securityScanLogs
|
|
})
|
|
```
|
|
|
|
#### Phase 4: Monitoring and Reporting
|
|
```javascript
|
|
// Real-time test monitoring
|
|
mcp__claude-flow__swarm_monitor({
|
|
"swarmId": "testing-swarm",
|
|
"interval": 2000
|
|
})
|
|
|
|
// Generate comprehensive test report
|
|
mcp__claude-flow__performance_report({
|
|
"format": "detailed",
|
|
"timeframe": "current-run"
|
|
})
|
|
|
|
// Get test results
|
|
mcp__claude-flow__task_results({
|
|
"taskId": "test-execution-001"
|
|
})
|
|
|
|
// Trend analysis
|
|
mcp__claude-flow__trend_analysis({
|
|
"metric": "test-coverage",
|
|
"period": "30d"
|
|
})
|
|
```
|
|
|
|
### CLI Fallback
|
|
```bash
|
|
# Quick testing swarm
|
|
npx claude-flow swarm "test application comprehensively" \
|
|
--strategy testing \
|
|
--mode star \
|
|
--parallel \
|
|
--timeout 600
|
|
```
|
|
|
|
## Pattern 4: Analysis Swarm
|
|
|
|
### Purpose
|
|
Deep code and system analysis through specialized analyzers.
|
|
|
|
### Architecture
|
|
```javascript
|
|
// Initialize analysis swarm
|
|
mcp__claude-flow__swarm_init({
|
|
"topology": "mesh",
|
|
"maxAgents": 5,
|
|
"strategy": "adaptive"
|
|
})
|
|
|
|
// Spawn analysis specialists
|
|
const analysisTeam = [
|
|
{
|
|
type: "analyst",
|
|
name: "Code Analyzer",
|
|
capabilities: ["static-analysis", "complexity-analysis", "dead-code-detection"]
|
|
},
|
|
{
|
|
type: "analyst",
|
|
name: "Security Analyzer",
|
|
capabilities: ["security-scan", "vulnerability-detection", "dependency-audit"]
|
|
},
|
|
{
|
|
type: "analyst",
|
|
name: "Performance Analyzer",
|
|
capabilities: ["profiling", "bottleneck-detection", "optimization"]
|
|
},
|
|
{
|
|
type: "analyst",
|
|
name: "Architecture Analyzer",
|
|
capabilities: ["dependency-analysis", "coupling-detection", "modularity-assessment"]
|
|
},
|
|
{
|
|
type: "documenter",
|
|
name: "Analysis Reporter",
|
|
capabilities: ["reporting", "visualization", "recommendations"]
|
|
}
|
|
]
|
|
|
|
// Spawn all analysts
|
|
analysisTeam.forEach(analyst => {
|
|
mcp__claude-flow__agent_spawn({
|
|
type: analyst.type,
|
|
name: analyst.name,
|
|
capabilities: analyst.capabilities
|
|
})
|
|
})
|
|
```
|
|
|
|
### Analysis Workflow
|
|
```javascript
|
|
// Parallel analysis execution
|
|
mcp__claude-flow__parallel_execute({
|
|
"tasks": [
|
|
{ "id": "analyze-code", "command": "analyze codebase structure and quality" },
|
|
{ "id": "analyze-security", "command": "scan for security vulnerabilities" },
|
|
{ "id": "analyze-performance", "command": "identify performance bottlenecks" },
|
|
{ "id": "analyze-architecture", "command": "assess architectural patterns" }
|
|
]
|
|
})
|
|
|
|
// Generate comprehensive analysis report
|
|
mcp__claude-flow__performance_report({
|
|
"format": "detailed",
|
|
"timeframe": "current"
|
|
})
|
|
|
|
// Cost analysis
|
|
mcp__claude-flow__cost_analysis({
|
|
"timeframe": "30d"
|
|
})
|
|
```
|
|
|
|
## Advanced Techniques
|
|
|
|
### Error Handling and Fault Tolerance
|
|
|
|
```javascript
|
|
// Setup fault tolerance for all agents
|
|
mcp__claude-flow__daa_fault_tolerance({
|
|
"agentId": "all",
|
|
"strategy": "auto-recovery"
|
|
})
|
|
|
|
// Error handling pattern
|
|
try {
|
|
await mcp__claude-flow__task_orchestrate({
|
|
"task": "complex operation",
|
|
"strategy": "parallel",
|
|
"priority": "high"
|
|
})
|
|
} catch (error) {
|
|
// Check swarm health
|
|
const status = await mcp__claude-flow__swarm_status({})
|
|
|
|
// Analyze error patterns
|
|
await mcp__claude-flow__error_analysis({
|
|
"logs": [error.message]
|
|
})
|
|
|
|
// Auto-recovery attempt
|
|
if (status.healthy) {
|
|
await mcp__claude-flow__task_orchestrate({
|
|
"task": "retry failed operation",
|
|
"strategy": "sequential"
|
|
})
|
|
}
|
|
}
|
|
```
|
|
|
|
### Memory and State Management
|
|
|
|
```javascript
|
|
// Cross-session persistence
|
|
mcp__claude-flow__memory_persist({
|
|
"sessionId": "swarm-session-001"
|
|
})
|
|
|
|
// Namespace management for different swarms
|
|
mcp__claude-flow__memory_namespace({
|
|
"namespace": "research-swarm",
|
|
"action": "create"
|
|
})
|
|
|
|
// Create state snapshot
|
|
mcp__claude-flow__state_snapshot({
|
|
"name": "development-checkpoint-1"
|
|
})
|
|
|
|
// Restore from snapshot if needed
|
|
mcp__claude-flow__context_restore({
|
|
"snapshotId": "development-checkpoint-1"
|
|
})
|
|
|
|
// Backup memory stores
|
|
mcp__claude-flow__memory_backup({
|
|
"path": "/workspaces/claude-code-flow/backups/swarm-memory.json"
|
|
})
|
|
```
|
|
|
|
### Neural Pattern Learning
|
|
|
|
```javascript
|
|
// Train neural patterns from successful workflows
|
|
mcp__claude-flow__neural_train({
|
|
"pattern_type": "coordination",
|
|
"training_data": JSON.stringify(successfulWorkflows),
|
|
"epochs": 50
|
|
})
|
|
|
|
// Adaptive learning from experience
|
|
mcp__claude-flow__learning_adapt({
|
|
"experience": {
|
|
"workflow": "research-to-report",
|
|
"success": true,
|
|
"duration": 3600,
|
|
"quality": 0.95
|
|
}
|
|
})
|
|
|
|
// Pattern recognition for optimization
|
|
mcp__claude-flow__pattern_recognize({
|
|
"data": workflowMetrics,
|
|
"patterns": ["bottleneck", "optimization-opportunity", "efficiency-gain"]
|
|
})
|
|
```
|
|
|
|
### Workflow Automation
|
|
|
|
```javascript
|
|
// Create reusable workflow
|
|
mcp__claude-flow__workflow_create({
|
|
"name": "full-stack-development",
|
|
"steps": [
|
|
{ "phase": "design", "agents": ["architect"] },
|
|
{ "phase": "implement", "agents": ["backend-dev", "frontend-dev"], "parallel": true },
|
|
{ "phase": "test", "agents": ["tester", "security-tester"], "parallel": true },
|
|
{ "phase": "review", "agents": ["reviewer"] },
|
|
{ "phase": "deploy", "agents": ["devops"] }
|
|
],
|
|
"triggers": ["on-commit", "scheduled-daily"]
|
|
})
|
|
|
|
// Setup automation rules
|
|
mcp__claude-flow__automation_setup({
|
|
"rules": [
|
|
{
|
|
"trigger": "file-changed",
|
|
"pattern": "*.js",
|
|
"action": "run-tests"
|
|
},
|
|
{
|
|
"trigger": "PR-created",
|
|
"action": "code-review-swarm"
|
|
}
|
|
]
|
|
})
|
|
|
|
// Event-driven triggers
|
|
mcp__claude-flow__trigger_setup({
|
|
"events": ["code-commit", "PR-merge", "deployment"],
|
|
"actions": ["test", "analyze", "document"]
|
|
})
|
|
```
|
|
|
|
### Performance Optimization
|
|
|
|
```javascript
|
|
// Topology optimization
|
|
mcp__claude-flow__topology_optimize({
|
|
"swarmId": "current-swarm"
|
|
})
|
|
|
|
// Load balancing
|
|
mcp__claude-flow__load_balance({
|
|
"swarmId": "development-swarm",
|
|
"tasks": taskQueue
|
|
})
|
|
|
|
// Agent coordination sync
|
|
mcp__claude-flow__coordination_sync({
|
|
"swarmId": "development-swarm"
|
|
})
|
|
|
|
// Auto-scaling
|
|
mcp__claude-flow__swarm_scale({
|
|
"swarmId": "development-swarm",
|
|
"targetSize": 12
|
|
})
|
|
```
|
|
|
|
### Monitoring and Metrics
|
|
|
|
```javascript
|
|
// Real-time swarm monitoring
|
|
mcp__claude-flow__swarm_monitor({
|
|
"swarmId": "active-swarm",
|
|
"interval": 3000
|
|
})
|
|
|
|
// Collect comprehensive metrics
|
|
mcp__claude-flow__metrics_collect({
|
|
"components": ["agents", "tasks", "memory", "performance"]
|
|
})
|
|
|
|
// Health monitoring
|
|
mcp__claude-flow__health_check({
|
|
"components": ["swarm", "agents", "neural", "memory"]
|
|
})
|
|
|
|
// Usage statistics
|
|
mcp__claude-flow__usage_stats({
|
|
"component": "swarm-orchestration"
|
|
})
|
|
|
|
// Trend analysis
|
|
mcp__claude-flow__trend_analysis({
|
|
"metric": "agent-performance",
|
|
"period": "7d"
|
|
})
|
|
```
|
|
|
|
## Best Practices
|
|
|
|
### 1. Choosing the Right Topology
|
|
|
|
- **Mesh**: Research, brainstorming, collaborative analysis
|
|
- **Hierarchical**: Structured development, sequential workflows
|
|
- **Star**: Testing, validation, centralized coordination
|
|
- **Ring**: Pipeline processing, staged workflows
|
|
|
|
### 2. Agent Specialization
|
|
|
|
- Assign specific capabilities to each agent
|
|
- Avoid overlapping responsibilities
|
|
- Use coordination agents for complex workflows
|
|
- Leverage memory for agent communication
|
|
|
|
### 3. Parallel Execution
|
|
|
|
- Identify independent tasks for parallelization
|
|
- Use sequential execution for dependent tasks
|
|
- Monitor resource usage during parallel execution
|
|
- Implement proper error handling
|
|
|
|
### 4. Memory Management
|
|
|
|
- Use namespaces to organize memory
|
|
- Set appropriate TTL values
|
|
- Create regular backups
|
|
- Implement state snapshots for checkpoints
|
|
|
|
### 5. Monitoring and Optimization
|
|
|
|
- Monitor swarm health regularly
|
|
- Collect and analyze metrics
|
|
- Optimize topology based on performance
|
|
- Use neural patterns to learn from success
|
|
|
|
### 6. Error Recovery
|
|
|
|
- Implement fault tolerance strategies
|
|
- Use auto-recovery mechanisms
|
|
- Analyze error patterns
|
|
- Create fallback workflows
|
|
|
|
## Real-World Examples
|
|
|
|
### Example 1: AI Research Project
|
|
```javascript
|
|
// Research AI trends, analyze findings, generate report
|
|
mcp__claude-flow__swarm_init({ topology: "mesh", maxAgents: 6 })
|
|
// Spawn: 2 researchers, 2 analysts, 1 synthesizer, 1 documenter
|
|
// Parallel gather → Analyze patterns → Synthesize → Report
|
|
```
|
|
|
|
### Example 2: Full-Stack Application
|
|
```javascript
|
|
// Build complete web application with testing
|
|
mcp__claude-flow__swarm_init({ topology: "hierarchical", maxAgents: 8 })
|
|
// Spawn: 1 architect, 2 devs, 1 db engineer, 2 testers, 1 reviewer, 1 devops
|
|
// Design → Parallel implement → Test → Review → Deploy
|
|
```
|
|
|
|
### Example 3: Security Audit
|
|
```javascript
|
|
// Comprehensive security analysis
|
|
mcp__claude-flow__swarm_init({ topology: "star", maxAgents: 5 })
|
|
// Spawn: 1 coordinator, 1 code analyzer, 1 security scanner, 1 penetration tester, 1 reporter
|
|
// Parallel scan → Vulnerability analysis → Penetration test → Report
|
|
```
|
|
|
|
### Example 4: Performance Optimization
|
|
```javascript
|
|
// Identify and fix performance bottlenecks
|
|
mcp__claude-flow__swarm_init({ topology: "mesh", maxAgents: 4 })
|
|
// Spawn: 1 profiler, 1 bottleneck analyzer, 1 optimizer, 1 tester
|
|
// Profile → Identify bottlenecks → Optimize → Validate
|
|
```
|
|
|
|
## Troubleshooting
|
|
|
|
### Common Issues
|
|
|
|
**Issue**: Swarm agents not coordinating properly
|
|
**Solution**: Check topology selection, verify memory usage, enable monitoring
|
|
|
|
**Issue**: Parallel execution failing
|
|
**Solution**: Verify task dependencies, check resource limits, implement error handling
|
|
|
|
**Issue**: Memory persistence not working
|
|
**Solution**: Verify namespaces, check TTL settings, ensure backup configuration
|
|
|
|
**Issue**: Performance degradation
|
|
**Solution**: Optimize topology, reduce agent count, analyze bottlenecks
|
|
|
|
## Related Skills
|
|
|
|
- `sparc-methodology` - Systematic development workflow
|
|
- `github-integration` - Repository management and automation
|
|
- `neural-patterns` - AI-powered coordination optimization
|
|
- `memory-management` - Cross-session state persistence
|
|
|
|
## References
|
|
|
|
- [Claude Flow Documentation](https://github.com/ruvnet/claude-flow)
|
|
- [Swarm Orchestration Guide](https://github.com/ruvnet/claude-flow/wiki/swarm)
|
|
- [MCP Tools Reference](https://github.com/ruvnet/claude-flow/wiki/mcp)
|
|
- [Performance Optimization](https://github.com/ruvnet/claude-flow/wiki/performance)
|
|
|
|
---
|
|
|
|
**Version**: 2.0.0
|
|
**Last Updated**: 2025-10-19
|
|
**Skill Level**: Advanced
|
|
**Estimated Learning Time**: 2-3 hours
|