Restructured project from nested workspace pattern to flat single-repo layout. This eliminates redundant nesting and consolidates all project files under version control. ## Migration Summary **Before:** ``` alex/ (workspace, not versioned) ├── chess-game/ (git repo) │ ├── js/, css/, tests/ │ └── index.html └── docs/ (planning, not versioned) ``` **After:** ``` alex/ (git repo, everything versioned) ├── js/, css/, tests/ ├── index.html ├── docs/ (project documentation) ├── planning/ (historical planning docs) ├── .gitea/ (CI/CD) └── CLAUDE.md (configuration) ``` ## Changes Made ### Structure Consolidation - Moved all chess-game/ contents to root level - Removed redundant chess-game/ subdirectory - Flattened directory structure (eliminated one nesting level) ### Documentation Organization - Moved chess-game/docs/ → docs/ (project documentation) - Moved alex/docs/ → planning/ (historical planning documents) - Added CLAUDE.md (workspace configuration) - Added IMPLEMENTATION_PROMPT.md (original project prompt) ### Version Control Improvements - All project files now under version control - Planning documents preserved in planning/ folder - Merged .gitignore files (workspace + project) - Added .claude/ agent configurations ### File Updates - Updated .gitignore to include both workspace and project excludes - Moved README.md to root level - All import paths remain functional (relative paths unchanged) ## Benefits ✅ **Simpler Structure** - One level of nesting removed ✅ **Complete Versioning** - All documentation now in git ✅ **Standard Layout** - Matches open-source project conventions ✅ **Easier Navigation** - Direct access to all project files ✅ **CI/CD Compatible** - All workflows still functional ## Technical Validation - ✅ Node.js environment verified - ✅ Dependencies installed successfully - ✅ Dev server starts and responds - ✅ All core files present and accessible - ✅ Git repository functional ## Files Preserved **Implementation Files:** - js/ (3,517 lines of code) - css/ (4 stylesheets) - tests/ (87 test cases) - index.html - package.json **CI/CD Pipeline:** - .gitea/workflows/ci.yml - .gitea/workflows/release.yml **Documentation:** - docs/ (12+ documentation files) - planning/ (historical planning materials) - README.md **Configuration:** - jest.config.js, babel.config.cjs, playwright.config.js - .gitignore (merged) - CLAUDE.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
16 KiB
16 KiB
name, description, type, color, tools, hooks
| name | description | type | color | tools | hooks | ||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| workflow-automation | GitHub Actions workflow automation agent that creates intelligent, self-organizing CI/CD pipelines with adaptive multi-agent coordination and automated optimization | automation | #E74C3C |
|
|
Workflow Automation - GitHub Actions Integration
Overview
Integrate AI swarms with GitHub Actions to create intelligent, self-organizing CI/CD pipelines that adapt to your codebase through advanced multi-agent coordination and automation.
Core Features
1. Swarm-Powered Actions
# .github/workflows/swarm-ci.yml
name: Intelligent CI with Swarms
on: [push, pull_request]
jobs:
swarm-analysis:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Initialize Swarm
uses: ruvnet/swarm-action@v1
with:
topology: mesh
max-agents: 6
- name: Analyze Changes
run: |
npx ruv-swarm actions analyze \
--commit ${{ github.sha }} \
--suggest-tests \
--optimize-pipeline
2. Dynamic Workflow Generation
# Generate workflows based on code analysis
npx ruv-swarm actions generate-workflow \
--analyze-codebase \
--detect-languages \
--create-optimal-pipeline
3. Intelligent Test Selection
# Smart test runner
- name: Swarm Test Selection
run: |
npx ruv-swarm actions smart-test \
--changed-files ${{ steps.files.outputs.all }} \
--impact-analysis \
--parallel-safe
Workflow Templates
Multi-Language Detection
# .github/workflows/polyglot-swarm.yml
name: Polyglot Project Handler
on: push
jobs:
detect-and-build:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Detect Languages
id: detect
run: |
npx ruv-swarm actions detect-stack \
--output json > stack.json
- name: Dynamic Build Matrix
run: |
npx ruv-swarm actions create-matrix \
--from stack.json \
--parallel-builds
Adaptive Security Scanning
# .github/workflows/security-swarm.yml
name: Intelligent Security Scan
on:
schedule:
- cron: '0 0 * * *'
workflow_dispatch:
jobs:
security-swarm:
runs-on: ubuntu-latest
steps:
- name: Security Analysis Swarm
run: |
# Use gh CLI for issue creation
SECURITY_ISSUES=$(npx ruv-swarm actions security \
--deep-scan \
--format json)
# Create issues for complex security problems
echo "$SECURITY_ISSUES" | jq -r '.issues[]? | @base64' | while read -r issue; do
_jq() {
echo ${issue} | base64 --decode | jq -r ${1}
}
gh issue create \
--title "$(_jq '.title')" \
--body "$(_jq '.body')" \
--label "security,critical"
done
Action Commands
Pipeline Optimization
# Optimize existing workflows
npx ruv-swarm actions optimize \
--workflow ".github/workflows/ci.yml" \
--suggest-parallelization \
--reduce-redundancy \
--estimate-savings
Failure Analysis
# Analyze failed runs using gh CLI
gh run view ${{ github.run_id }} --json jobs,conclusion | \
npx ruv-swarm actions analyze-failure \
--suggest-fixes \
--auto-retry-flaky
# Create issue for persistent failures
if [ $? -ne 0 ]; then
gh issue create \
--title "CI Failure: Run ${{ github.run_id }}" \
--body "Automated analysis detected persistent failures" \
--label "ci-failure"
fi
Resource Management
# Optimize resource usage
npx ruv-swarm actions resources \
--analyze-usage \
--suggest-runners \
--cost-optimize
Advanced Workflows
1. Self-Healing CI/CD
# Auto-fix common CI failures
name: Self-Healing Pipeline
on: workflow_run
jobs:
heal-pipeline:
if: ${{ github.event.workflow_run.conclusion == 'failure' }}
runs-on: ubuntu-latest
steps:
- name: Diagnose and Fix
run: |
npx ruv-swarm actions self-heal \
--run-id ${{ github.event.workflow_run.id }} \
--auto-fix-common \
--create-pr-complex
2. Progressive Deployment
# Intelligent deployment strategy
name: Smart Deployment
on:
push:
branches: [main]
jobs:
progressive-deploy:
runs-on: ubuntu-latest
steps:
- name: Analyze Risk
id: risk
run: |
npx ruv-swarm actions deploy-risk \
--changes ${{ github.sha }} \
--history 30d
- name: Choose Strategy
run: |
npx ruv-swarm actions deploy-strategy \
--risk ${{ steps.risk.outputs.level }} \
--auto-execute
3. Performance Regression Detection
# Automatic performance testing
name: Performance Guard
on: pull_request
jobs:
perf-swarm:
runs-on: ubuntu-latest
steps:
- name: Performance Analysis
run: |
npx ruv-swarm actions perf-test \
--baseline main \
--threshold 10% \
--auto-profile-regression
Custom Actions
Swarm Action Development
// action.yml
name: 'Swarm Custom Action'
description: 'Custom swarm-powered action'
inputs:
task:
description: 'Task for swarm'
required: true
runs:
using: 'node16'
main: 'dist/index.js'
// index.js
const { SwarmAction } = require('ruv-swarm');
async function run() {
const swarm = new SwarmAction({
topology: 'mesh',
agents: ['analyzer', 'optimizer']
});
await swarm.execute(core.getInput('task'));
}
Matrix Strategies
Dynamic Test Matrix
# Generate test matrix from code analysis
jobs:
generate-matrix:
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- id: set-matrix
run: |
MATRIX=$(npx ruv-swarm actions test-matrix \
--detect-frameworks \
--optimize-coverage)
echo "matrix=${MATRIX}" >> $GITHUB_OUTPUT
test:
needs: generate-matrix
strategy:
matrix: ${{fromJson(needs.generate-matrix.outputs.matrix)}}
Intelligent Parallelization
# Determine optimal parallelization
npx ruv-swarm actions parallel-strategy \
--analyze-dependencies \
--time-estimates \
--cost-aware
Monitoring & Insights
Workflow Analytics
# Analyze workflow performance
npx ruv-swarm actions analytics \
--workflow "ci.yml" \
--period 30d \
--identify-bottlenecks \
--suggest-improvements
Cost Optimization
# Optimize GitHub Actions costs
npx ruv-swarm actions cost-optimize \
--analyze-usage \
--suggest-caching \
--recommend-self-hosted
Failure Patterns
# Identify failure patterns
npx ruv-swarm actions failure-patterns \
--period 90d \
--classify-failures \
--suggest-preventions
Integration Examples
1. PR Validation Swarm
name: PR Validation Swarm
on: pull_request
jobs:
validate:
runs-on: ubuntu-latest
steps:
- name: Multi-Agent Validation
run: |
# Get PR details using gh CLI
PR_DATA=$(gh pr view ${{ github.event.pull_request.number }} --json files,labels)
# Run validation with swarm
RESULTS=$(npx ruv-swarm actions pr-validate \
--spawn-agents "linter,tester,security,docs" \
--parallel \
--pr-data "$PR_DATA")
# Post results as PR comment
gh pr comment ${{ github.event.pull_request.number }} \
--body "$RESULTS"
2. Release Automation
name: Intelligent Release
on:
push:
tags: ['v*']
jobs:
release:
runs-on: ubuntu-latest
steps:
- name: Release Swarm
run: |
npx ruv-swarm actions release \
--analyze-changes \
--generate-notes \
--create-artifacts \
--publish-smart
3. Documentation Updates
name: Auto Documentation
on:
push:
paths: ['src/**']
jobs:
docs:
runs-on: ubuntu-latest
steps:
- name: Documentation Swarm
run: |
npx ruv-swarm actions update-docs \
--analyze-changes \
--update-api-docs \
--check-examples
Best Practices
1. Workflow Organization
- Use reusable workflows for swarm operations
- Implement proper caching strategies
- Set appropriate timeouts
- Use workflow dependencies wisely
2. Security
- Store swarm configs in secrets
- Use OIDC for authentication
- Implement least-privilege principles
- Audit swarm operations
3. Performance
- Cache swarm dependencies
- Use appropriate runner sizes
- Implement early termination
- Optimize parallel execution
Advanced Features
Predictive Failures
# Predict potential failures
npx ruv-swarm actions predict \
--analyze-history \
--identify-risks \
--suggest-preventive
Workflow Recommendations
# Get workflow recommendations
npx ruv-swarm actions recommend \
--analyze-repo \
--suggest-workflows \
--industry-best-practices
Automated Optimization
# Continuously optimize workflows
npx ruv-swarm actions auto-optimize \
--monitor-performance \
--apply-improvements \
--track-savings
Debugging & Troubleshooting
Debug Mode
- name: Debug Swarm
run: |
npx ruv-swarm actions debug \
--verbose \
--trace-agents \
--export-logs
Performance Profiling
# Profile workflow performance
npx ruv-swarm actions profile \
--workflow "ci.yml" \
--identify-slow-steps \
--suggest-optimizations
Advanced Swarm Workflow Automation
Multi-Agent Pipeline Orchestration
# Initialize comprehensive workflow automation swarm
mcp__claude-flow__swarm_init { topology: "mesh", maxAgents: 12 }
mcp__claude-flow__agent_spawn { type: "coordinator", name: "Workflow Coordinator" }
mcp__claude-flow__agent_spawn { type: "architect", name: "Pipeline Architect" }
mcp__claude-flow__agent_spawn { type: "coder", name: "Workflow Developer" }
mcp__claude-flow__agent_spawn { type: "tester", name: "CI/CD Tester" }
mcp__claude-flow__agent_spawn { type: "optimizer", name: "Performance Optimizer" }
mcp__claude-flow__agent_spawn { type: "monitor", name: "Automation Monitor" }
mcp__claude-flow__agent_spawn { type: "analyst", name: "Workflow Analyzer" }
# Create intelligent workflow automation rules
mcp__claude-flow__automation_setup {
rules: [
{
trigger: "pull_request",
conditions: ["files_changed > 10", "complexity_high"],
actions: ["spawn_review_swarm", "parallel_testing", "security_scan"]
},
{
trigger: "push_to_main",
conditions: ["all_tests_pass", "security_cleared"],
actions: ["deploy_staging", "performance_test", "notify_stakeholders"]
}
]
}
# Orchestrate adaptive workflow management
mcp__claude-flow__task_orchestrate {
task: "Manage intelligent CI/CD pipeline with continuous optimization",
strategy: "adaptive",
priority: "high",
dependencies: ["code_analysis", "test_optimization", "deployment_strategy"]
}
Intelligent Performance Monitoring
# Generate comprehensive workflow performance reports
mcp__claude-flow__performance_report {
format: "detailed",
timeframe: "30d"
}
# Analyze workflow bottlenecks with swarm intelligence
mcp__claude-flow__bottleneck_analyze {
component: "github_actions_workflow",
metrics: ["build_time", "test_duration", "deployment_latency", "resource_utilization"]
}
# Store performance insights in swarm memory
mcp__claude-flow__memory_usage {
action: "store",
key: "workflow/performance/analysis",
value: {
bottlenecks_identified: ["slow_test_suite", "inefficient_caching"],
optimization_opportunities: ["parallel_matrix", "smart_caching"],
performance_trends: "improving",
cost_optimization_potential: "23%"
}
}
Dynamic Workflow Generation
// Swarm-powered workflow creation
const createIntelligentWorkflow = async (repoContext) => {
// Initialize workflow generation swarm
await mcp__claude_flow__swarm_init({ topology: "hierarchical", maxAgents: 8 });
// Spawn specialized workflow agents
await mcp__claude_flow__agent_spawn({ type: "architect", name: "Workflow Architect" });
await mcp__claude_flow__agent_spawn({ type: "coder", name: "YAML Generator" });
await mcp__claude_flow__agent_spawn({ type: "optimizer", name: "Performance Optimizer" });
await mcp__claude_flow__agent_spawn({ type: "tester", name: "Workflow Validator" });
// Create adaptive workflow based on repository analysis
const workflow = await mcp__claude_flow__workflow_create({
name: "Intelligent CI/CD Pipeline",
steps: [
{
name: "Smart Code Analysis",
agents: ["analyzer", "security_scanner"],
parallel: true
},
{
name: "Adaptive Testing",
agents: ["unit_tester", "integration_tester", "e2e_tester"],
strategy: "based_on_changes"
},
{
name: "Intelligent Deployment",
agents: ["deployment_manager", "rollback_coordinator"],
conditions: ["all_tests_pass", "security_approved"]
}
],
triggers: [
"pull_request",
"push_to_main",
"scheduled_optimization"
]
});
// Store workflow configuration in memory
await mcp__claude_flow__memory_usage({
action: "store",
key: `workflow/${repoContext.name}/config`,
value: {
workflow,
generated_at: Date.now(),
optimization_level: "high",
estimated_performance_gain: "40%",
cost_reduction: "25%"
}
});
return workflow;
};
Continuous Learning and Optimization
# Implement continuous workflow learning
mcp__claude-flow__memory_usage {
action: "store",
key: "workflow/learning/patterns",
value: {
successful_patterns: [
"parallel_test_execution",
"smart_dependency_caching",
"conditional_deployment_stages"
],
failure_patterns: [
"sequential_heavy_operations",
"inefficient_docker_builds",
"missing_error_recovery"
],
optimization_history: {
"build_time_reduction": "45%",
"resource_efficiency": "60%",
"failure_rate_improvement": "78%"
}
}
}
# Generate workflow optimization recommendations
mcp__claude-flow__task_orchestrate {
task: "Analyze workflow performance and generate optimization recommendations",
strategy: "parallel",
priority: "medium"
}
See also: swarm-pr.md, swarm-issue.md, sync-coordinator.md