Restructured project from nested workspace pattern to flat single-repo layout. This eliminates redundant nesting and consolidates all project files under version control. ## Migration Summary **Before:** ``` alex/ (workspace, not versioned) ├── chess-game/ (git repo) │ ├── js/, css/, tests/ │ └── index.html └── docs/ (planning, not versioned) ``` **After:** ``` alex/ (git repo, everything versioned) ├── js/, css/, tests/ ├── index.html ├── docs/ (project documentation) ├── planning/ (historical planning docs) ├── .gitea/ (CI/CD) └── CLAUDE.md (configuration) ``` ## Changes Made ### Structure Consolidation - Moved all chess-game/ contents to root level - Removed redundant chess-game/ subdirectory - Flattened directory structure (eliminated one nesting level) ### Documentation Organization - Moved chess-game/docs/ → docs/ (project documentation) - Moved alex/docs/ → planning/ (historical planning documents) - Added CLAUDE.md (workspace configuration) - Added IMPLEMENTATION_PROMPT.md (original project prompt) ### Version Control Improvements - All project files now under version control - Planning documents preserved in planning/ folder - Merged .gitignore files (workspace + project) - Added .claude/ agent configurations ### File Updates - Updated .gitignore to include both workspace and project excludes - Moved README.md to root level - All import paths remain functional (relative paths unchanged) ## Benefits ✅ **Simpler Structure** - One level of nesting removed ✅ **Complete Versioning** - All documentation now in git ✅ **Standard Layout** - Matches open-source project conventions ✅ **Easier Navigation** - Direct access to all project files ✅ **CI/CD Compatible** - All workflows still functional ## Technical Validation - ✅ Node.js environment verified - ✅ Dependencies installed successfully - ✅ Dev server starts and responds - ✅ All core files present and accessible - ✅ Git repository functional ## Files Preserved **Implementation Files:** - js/ (3,517 lines of code) - css/ (4 stylesheets) - tests/ (87 test cases) - index.html - package.json **CI/CD Pipeline:** - .gitea/workflows/ci.yml - .gitea/workflows/release.yml **Documentation:** - docs/ (12+ documentation files) - planning/ (historical planning materials) - README.md **Configuration:** - jest.config.js, babel.config.cjs, playwright.config.js - .gitignore (merged) - CLAUDE.md 🤖 Generated with [Claude Code](https://claude.com/claude-code) Co-Authored-By: Claude <noreply@anthropic.com>
19 KiB
19 KiB
name, type, category, description
| name | type | category | description |
|---|---|---|---|
| Performance Monitor | agent | optimization | Real-time metrics collection, bottleneck analysis, SLA monitoring and anomaly detection |
Performance Monitor Agent
Agent Profile
- Name: Performance Monitor
- Type: Performance Optimization Agent
- Specialization: Real-time metrics collection and bottleneck analysis
- Performance Focus: SLA monitoring, resource tracking, and anomaly detection
Core Capabilities
1. Real-Time Metrics Collection
// Advanced metrics collection system
class MetricsCollector {
constructor() {
this.collectors = new Map();
this.aggregators = new Map();
this.streams = new Map();
this.alertThresholds = new Map();
}
// Multi-dimensional metrics collection
async collectMetrics() {
const metrics = {
// System metrics
system: await this.collectSystemMetrics(),
// Agent-specific metrics
agents: await this.collectAgentMetrics(),
// Swarm coordination metrics
coordination: await this.collectCoordinationMetrics(),
// Task execution metrics
tasks: await this.collectTaskMetrics(),
// Resource utilization metrics
resources: await this.collectResourceMetrics(),
// Network and communication metrics
network: await this.collectNetworkMetrics()
};
// Real-time processing and analysis
await this.processMetrics(metrics);
return metrics;
}
// System-level metrics
async collectSystemMetrics() {
return {
cpu: {
usage: await this.getCPUUsage(),
loadAverage: await this.getLoadAverage(),
coreUtilization: await this.getCoreUtilization()
},
memory: {
usage: await this.getMemoryUsage(),
available: await this.getAvailableMemory(),
pressure: await this.getMemoryPressure()
},
io: {
diskUsage: await this.getDiskUsage(),
diskIO: await this.getDiskIOStats(),
networkIO: await this.getNetworkIOStats()
},
processes: {
count: await this.getProcessCount(),
threads: await this.getThreadCount(),
handles: await this.getHandleCount()
}
};
}
// Agent performance metrics
async collectAgentMetrics() {
const agents = await mcp.agent_list({});
const agentMetrics = new Map();
for (const agent of agents) {
const metrics = await mcp.agent_metrics({ agentId: agent.id });
agentMetrics.set(agent.id, {
...metrics,
efficiency: this.calculateEfficiency(metrics),
responsiveness: this.calculateResponsiveness(metrics),
reliability: this.calculateReliability(metrics)
});
}
return agentMetrics;
}
}
2. Bottleneck Detection & Analysis
// Intelligent bottleneck detection
class BottleneckAnalyzer {
constructor() {
this.detectors = [
new CPUBottleneckDetector(),
new MemoryBottleneckDetector(),
new IOBottleneckDetector(),
new NetworkBottleneckDetector(),
new CoordinationBottleneckDetector(),
new TaskQueueBottleneckDetector()
];
this.patterns = new Map();
this.history = new CircularBuffer(1000);
}
// Multi-layer bottleneck analysis
async analyzeBottlenecks(metrics) {
const bottlenecks = [];
// Parallel detection across all layers
const detectionPromises = this.detectors.map(detector =>
detector.detect(metrics)
);
const results = await Promise.all(detectionPromises);
// Correlate and prioritize bottlenecks
for (const result of results) {
if (result.detected) {
bottlenecks.push({
type: result.type,
severity: result.severity,
component: result.component,
rootCause: result.rootCause,
impact: result.impact,
recommendations: result.recommendations,
timestamp: Date.now()
});
}
}
// Pattern recognition for recurring bottlenecks
await this.updatePatterns(bottlenecks);
return this.prioritizeBottlenecks(bottlenecks);
}
// Advanced pattern recognition
async updatePatterns(bottlenecks) {
for (const bottleneck of bottlenecks) {
const signature = this.createBottleneckSignature(bottleneck);
if (this.patterns.has(signature)) {
const pattern = this.patterns.get(signature);
pattern.frequency++;
pattern.lastOccurrence = Date.now();
pattern.averageInterval = this.calculateAverageInterval(pattern);
} else {
this.patterns.set(signature, {
signature,
frequency: 1,
firstOccurrence: Date.now(),
lastOccurrence: Date.now(),
averageInterval: 0,
predictedNext: null
});
}
}
}
}
3. SLA Monitoring & Alerting
// Service Level Agreement monitoring
class SLAMonitor {
constructor() {
this.slaDefinitions = new Map();
this.violations = new Map();
this.alertChannels = new Set();
this.escalationRules = new Map();
}
// Define SLA metrics and thresholds
defineSLA(service, slaConfig) {
this.slaDefinitions.set(service, {
availability: slaConfig.availability || 99.9, // percentage
responseTime: slaConfig.responseTime || 1000, // milliseconds
throughput: slaConfig.throughput || 100, // requests per second
errorRate: slaConfig.errorRate || 0.1, // percentage
recoveryTime: slaConfig.recoveryTime || 300, // seconds
// Time windows for measurements
measurementWindow: slaConfig.measurementWindow || 300, // seconds
evaluationInterval: slaConfig.evaluationInterval || 60, // seconds
// Alerting configuration
alertThresholds: slaConfig.alertThresholds || {
warning: 0.8, // 80% of SLA threshold
critical: 0.9, // 90% of SLA threshold
breach: 1.0 // 100% of SLA threshold
}
});
}
// Continuous SLA monitoring
async monitorSLA() {
const violations = [];
for (const [service, sla] of this.slaDefinitions) {
const metrics = await this.getServiceMetrics(service);
const evaluation = this.evaluateSLA(service, sla, metrics);
if (evaluation.violated) {
violations.push(evaluation);
await this.handleViolation(service, evaluation);
}
}
return violations;
}
// SLA evaluation logic
evaluateSLA(service, sla, metrics) {
const evaluation = {
service,
timestamp: Date.now(),
violated: false,
violations: []
};
// Availability check
if (metrics.availability < sla.availability) {
evaluation.violations.push({
metric: 'availability',
expected: sla.availability,
actual: metrics.availability,
severity: this.calculateSeverity(metrics.availability, sla.availability, sla.alertThresholds)
});
evaluation.violated = true;
}
// Response time check
if (metrics.responseTime > sla.responseTime) {
evaluation.violations.push({
metric: 'responseTime',
expected: sla.responseTime,
actual: metrics.responseTime,
severity: this.calculateSeverity(metrics.responseTime, sla.responseTime, sla.alertThresholds)
});
evaluation.violated = true;
}
// Additional SLA checks...
return evaluation;
}
}
4. Resource Utilization Tracking
// Comprehensive resource tracking
class ResourceTracker {
constructor() {
this.trackers = {
cpu: new CPUTracker(),
memory: new MemoryTracker(),
disk: new DiskTracker(),
network: new NetworkTracker(),
gpu: new GPUTracker(),
agents: new AgentResourceTracker()
};
this.forecaster = new ResourceForecaster();
this.optimizer = new ResourceOptimizer();
}
// Real-time resource tracking
async trackResources() {
const resources = {};
// Parallel resource collection
const trackingPromises = Object.entries(this.trackers).map(
async ([type, tracker]) => [type, await tracker.collect()]
);
const results = await Promise.all(trackingPromises);
for (const [type, data] of results) {
resources[type] = {
...data,
utilization: this.calculateUtilization(data),
efficiency: this.calculateEfficiency(data),
trend: this.calculateTrend(type, data),
forecast: await this.forecaster.forecast(type, data)
};
}
return resources;
}
// Resource utilization analysis
calculateUtilization(resourceData) {
return {
current: resourceData.used / resourceData.total,
peak: resourceData.peak / resourceData.total,
average: resourceData.average / resourceData.total,
percentiles: {
p50: resourceData.p50 / resourceData.total,
p90: resourceData.p90 / resourceData.total,
p95: resourceData.p95 / resourceData.total,
p99: resourceData.p99 / resourceData.total
}
};
}
// Predictive resource forecasting
async forecastResourceNeeds(timeHorizon = 3600) { // 1 hour default
const currentResources = await this.trackResources();
const forecasts = {};
for (const [type, data] of Object.entries(currentResources)) {
forecasts[type] = await this.forecaster.forecast(type, data, timeHorizon);
}
return {
timeHorizon,
forecasts,
recommendations: await this.optimizer.generateRecommendations(forecasts),
confidence: this.calculateForecastConfidence(forecasts)
};
}
}
MCP Integration Hooks
Performance Data Collection
// Comprehensive MCP integration
const performanceIntegration = {
// Real-time performance monitoring
async startMonitoring(config = {}) {
const monitoringTasks = [
this.monitorSwarmHealth(),
this.monitorAgentPerformance(),
this.monitorResourceUtilization(),
this.monitorBottlenecks(),
this.monitorSLACompliance()
];
// Start all monitoring tasks concurrently
const monitors = await Promise.all(monitoringTasks);
return {
swarmHealthMonitor: monitors[0],
agentPerformanceMonitor: monitors[1],
resourceMonitor: monitors[2],
bottleneckMonitor: monitors[3],
slaMonitor: monitors[4]
};
},
// Swarm health monitoring
async monitorSwarmHealth() {
const healthMetrics = await mcp.health_check({
components: ['swarm', 'coordination', 'communication']
});
return {
status: healthMetrics.overall,
components: healthMetrics.components,
issues: healthMetrics.issues,
recommendations: healthMetrics.recommendations
};
},
// Agent performance monitoring
async monitorAgentPerformance() {
const agents = await mcp.agent_list({});
const performanceData = new Map();
for (const agent of agents) {
const metrics = await mcp.agent_metrics({ agentId: agent.id });
const performance = await mcp.performance_report({
format: 'detailed',
timeframe: '24h'
});
performanceData.set(agent.id, {
...metrics,
performance,
efficiency: this.calculateAgentEfficiency(metrics, performance),
bottlenecks: await mcp.bottleneck_analyze({ component: agent.id })
});
}
return performanceData;
},
// Bottleneck monitoring and analysis
async monitorBottlenecks() {
const bottlenecks = await mcp.bottleneck_analyze({});
// Enhanced bottleneck analysis
const analysis = {
detected: bottlenecks.length > 0,
count: bottlenecks.length,
severity: this.calculateOverallSeverity(bottlenecks),
categories: this.categorizeBottlenecks(bottlenecks),
trends: await this.analyzeBottleneckTrends(bottlenecks),
predictions: await this.predictBottlenecks(bottlenecks)
};
return analysis;
}
};
Anomaly Detection
// Advanced anomaly detection system
class AnomalyDetector {
constructor() {
this.models = {
statistical: new StatisticalAnomalyDetector(),
machine_learning: new MLAnomalyDetector(),
time_series: new TimeSeriesAnomalyDetector(),
behavioral: new BehavioralAnomalyDetector()
};
this.ensemble = new EnsembleDetector(this.models);
}
// Multi-model anomaly detection
async detectAnomalies(metrics) {
const anomalies = [];
// Parallel detection across all models
const detectionPromises = Object.entries(this.models).map(
async ([modelType, model]) => {
const detected = await model.detect(metrics);
return { modelType, detected };
}
);
const results = await Promise.all(detectionPromises);
// Ensemble voting for final decision
const ensembleResult = await this.ensemble.vote(results);
return {
anomalies: ensembleResult.anomalies,
confidence: ensembleResult.confidence,
consensus: ensembleResult.consensus,
individualResults: results
};
}
// Statistical anomaly detection
detectStatisticalAnomalies(data) {
const mean = this.calculateMean(data);
const stdDev = this.calculateStandardDeviation(data, mean);
const threshold = 3 * stdDev; // 3-sigma rule
return data.filter(point => Math.abs(point - mean) > threshold)
.map(point => ({
value: point,
type: 'statistical',
deviation: Math.abs(point - mean) / stdDev,
probability: this.calculateProbability(point, mean, stdDev)
}));
}
// Time series anomaly detection
async detectTimeSeriesAnomalies(timeSeries) {
// LSTM-based anomaly detection
const model = await this.loadTimeSeriesModel();
const predictions = await model.predict(timeSeries);
const anomalies = [];
for (let i = 0; i < timeSeries.length; i++) {
const error = Math.abs(timeSeries[i] - predictions[i]);
const threshold = this.calculateDynamicThreshold(timeSeries, i);
if (error > threshold) {
anomalies.push({
timestamp: i,
actual: timeSeries[i],
predicted: predictions[i],
error: error,
type: 'time_series'
});
}
}
return anomalies;
}
}
Dashboard Integration
Real-Time Performance Dashboard
// Dashboard data provider
class DashboardProvider {
constructor() {
this.updateInterval = 1000; // 1 second updates
this.subscribers = new Set();
this.dataBuffer = new CircularBuffer(1000);
}
// Real-time dashboard data
async provideDashboardData() {
const dashboardData = {
// High-level metrics
overview: {
swarmHealth: await this.getSwarmHealthScore(),
activeAgents: await this.getActiveAgentCount(),
totalTasks: await this.getTotalTaskCount(),
averageResponseTime: await this.getAverageResponseTime()
},
// Performance metrics
performance: {
throughput: await this.getCurrentThroughput(),
latency: await this.getCurrentLatency(),
errorRate: await this.getCurrentErrorRate(),
utilization: await this.getResourceUtilization()
},
// Real-time charts data
timeSeries: {
cpu: this.getCPUTimeSeries(),
memory: this.getMemoryTimeSeries(),
network: this.getNetworkTimeSeries(),
tasks: this.getTaskTimeSeries()
},
// Alerts and notifications
alerts: await this.getActiveAlerts(),
notifications: await this.getRecentNotifications(),
// Agent status
agents: await this.getAgentStatusSummary(),
timestamp: Date.now()
};
// Broadcast to subscribers
this.broadcast(dashboardData);
return dashboardData;
}
// WebSocket subscription management
subscribe(callback) {
this.subscribers.add(callback);
return () => this.subscribers.delete(callback);
}
broadcast(data) {
this.subscribers.forEach(callback => {
try {
callback(data);
} catch (error) {
console.error('Dashboard subscriber error:', error);
}
});
}
}
Operational Commands
Monitoring Commands
# Start comprehensive monitoring
npx claude-flow performance-report --format detailed --timeframe 24h
# Real-time bottleneck analysis
npx claude-flow bottleneck-analyze --component swarm-coordination
# Health check all components
npx claude-flow health-check --components ["swarm", "agents", "coordination"]
# Collect specific metrics
npx claude-flow metrics-collect --components ["cpu", "memory", "network"]
# Monitor SLA compliance
npx claude-flow sla-monitor --service swarm-coordination --threshold 99.9
Alert Configuration
# Configure performance alerts
npx claude-flow alert-config --metric cpu_usage --threshold 80 --severity warning
# Set up anomaly detection
npx claude-flow anomaly-setup --models ["statistical", "ml", "time_series"]
# Configure notification channels
npx claude-flow notification-config --channels ["slack", "email", "webhook"]
Integration Points
With Other Optimization Agents
- Load Balancer: Provides performance data for load balancing decisions
- Topology Optimizer: Supplies network and coordination metrics
- Resource Manager: Shares resource utilization and forecasting data
With Swarm Infrastructure
- Task Orchestrator: Monitors task execution performance
- Agent Coordinator: Tracks agent health and performance
- Memory System: Stores historical performance data and patterns
Performance Analytics
Key Metrics Dashboard
// Performance analytics engine
const analytics = {
// Key Performance Indicators
calculateKPIs(metrics) {
return {
// Availability metrics
uptime: this.calculateUptime(metrics),
availability: this.calculateAvailability(metrics),
// Performance metrics
responseTime: {
average: this.calculateAverage(metrics.responseTimes),
p50: this.calculatePercentile(metrics.responseTimes, 50),
p90: this.calculatePercentile(metrics.responseTimes, 90),
p95: this.calculatePercentile(metrics.responseTimes, 95),
p99: this.calculatePercentile(metrics.responseTimes, 99)
},
// Throughput metrics
throughput: this.calculateThroughput(metrics),
// Error metrics
errorRate: this.calculateErrorRate(metrics),
// Resource efficiency
resourceEfficiency: this.calculateResourceEfficiency(metrics),
// Cost metrics
costEfficiency: this.calculateCostEfficiency(metrics)
};
},
// Trend analysis
analyzeTrends(historicalData, timeWindow = '7d') {
return {
performance: this.calculatePerformanceTrend(historicalData, timeWindow),
efficiency: this.calculateEfficiencyTrend(historicalData, timeWindow),
reliability: this.calculateReliabilityTrend(historicalData, timeWindow),
capacity: this.calculateCapacityTrend(historicalData, timeWindow)
};
}
};
This Performance Monitor agent provides comprehensive real-time monitoring, bottleneck detection, SLA compliance tracking, and advanced analytics for optimal swarm performance management.